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ABSTRACT  

Understanding rational numbers is a source of difficulty with mathematics for students across 

ages and nationalities. This intervention study focuses on the misconception on the part of the 

students to think that multiplication makes the operand numbers bigger and division makes 

them smaller, independently of the numbers involved. In this study, a refutational text was 

administered to 6th grade students to help them disengage from these misconceptions. 

Refutational texts directly state the erroneous beliefs and immediately overturn them by 

presenting the alternative correct ideas in a comprehensive and persuasive way. From the 87 

6th grade students that participated in the Pre/Post/Retention-test intervention study, 51 

students (experimental group) received the refutational text. The results showed that the 

refutational text helped the students partly overcome the multiplication makes bigger 

misconception, and the results had a long-term effect. Not only the high, but also the low prior 

knowledge students were profited from the intervention. In addition, students managed to 

transfer the acquired knowledge about multiplication also to division items: the results showed 

statistically significantly less mistakes of the kind division makes smaller after the intervention. 

Theoretical and educational implications are discussed. 
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RÉSUMÉ 
Pour des étudiants de mathématiques d’origine et d'âge variés, saisir les nombres rationnels 

pose des difficultés. Cette étude d’intervention s'intéresse à la fausse idée de la part des 

étudiants que pour n’importe quel nombre, la multiplication rend les opérandes supérieures 

alors que la division les réduit. Pour cette étude, un texte de réfutation (refutational text) fut 

distribué à des élèves de 6ème  pour les aider à surmonter ce malentendu.  Les textes de 

réfutation exposent les convictions erronées aussitôt rectifiées par les bonnes alternatives 

présentées d’une manière compréhensive et convaincante. Notre groupe expérimental 

comptant 51 parmi les 87 élèves de 6ème qui ont participé au test (pre/post/retention test) de 

cette étude d’intervention, a reçu ce texte de réfutation. Les résultats ont montré que le texte 

avait effectivement aidé les élèves à surmonter en partie le malentendu de ‘l’augmentation par 

la multiplication’, avec des effets durables. Pas seulement les élèves ayant une connaissance 
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préalable forte, mais aussi ceux avec une connaissance préalable faible ont profité de cette 

intervention. Les élèves ont par ailleurs réussi à appliquer le savoir requis sur la multiplication, 

à la division également ; les résultats ont montré que les erreurs du type ‘réduction par division’ 

ont statistiquement baissé. Des éventuelles implications éducatives et théoriques seront 

discutées par la suite. 

MOTS-CLÉS  

Texte de refutation, “natural number bias”, “augmentation par multiplication”, fausse idée, 

nombres rationnels 

 

 

INTRODUCTION 
 

Understanding rational numbers is not only an important component of mathematical learning, 

but also a predictive factor for later mathematical achievement in algebra, geometry and 

statistics as well as in science and other knowledge domains (Bailey, Hoard, Nugent, & Geary, 

2012). The main reason why rational numbers are an important part of the mathematics 

curricula worldwide is because they are necessary not only for success in school but also for 

later professional development (Ritchie & Bates, 2013). 

Unfortunately, ample research has shown that, in a variety of ages and nationalities, 

individuals struggle with rational number concepts and procedures (Bailey et al., 2012; Gómez 

et al., 2014). Many of these difficulties can be explained by a tendency to rely on natural number 

knowledge when reasoning about numbers such as rational and real numbers, where natural 

number properties do not apply. This phenomenon is often called whole or natural number bias 

(hereafter NNB) (Ni & Zhou, 2005).  

This study focuses on students’ misconceptions about operations between rational 

numbers and specifically with the misconception to associate each operation with specific result 

size, i.e., expecting multiplication to always result in bigger numbers and division to always 

result in smaller numbers. Here, it is argued that this misconception stem from the natural 

number bias phenomenon.  

 

The Natural Number Bias phenomenon 

The interference of natural number knowledge in non-natural number contexts has been long 

known to mathematics teachers and mathematics education researchers (Hart, 1981) mainly as 

a source of systematic errors that appear in cases where rational numbers differ from natural 

numbers. This interference results in certain kinds of mistakes because natural and rational 

numbers are based on different principles and properties. Thus, prior knowledge and experience 

with natural numbers is most often not supportive of rational numbers which are introduced 

later in instruction. Actually, in certain areas of rational and real number reasoning, application 

of natural number rules leads to misconceptions and errors (Carpenter, Fennema, & Romberg, 

1993; Gelman, 2000; Ni & Zhou, 2005; Smith, Solomon, & Carey, 2005). Such areas are the 

dense structure of the set of rational numbers, the ordering of the rational numbers and the 

operations between rational numbers.  

Considering the dense structure of rational numbers, for example, it is well documented 

that students tend to think that, similar to natural numbers, rational and also real numbers are 

discrete (i.e., every number has a unique successor and there is no other natural number between 

two successive natural numbers). Thus, they erroneously respond that there is no number 

between two pseudo-successive numbers, such as 0.5 and 0.6 (Hannula, Pehkonen, Maijala, & 

Soro, 2006; Merenluoto & Lehtinen, 2004; Vamvakoussi & Vosniadou, 2010). In addition, 

considering the ordering of decimal numbers, students tend to think that – as with natural 
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numbers – decimal numbers with more digits are larger, e.g., that 2.367 is larger than 2.6 

(Nesher & Peled, 1986; Resnick et al., 1989). In a similar vein, they erroneously think that a 

fraction’s magnitude always increases when its denominator, numerator or both increase (e.g., 

249/1000 is larger than ¼), which results in mistakes in ordering fractions (DeWolf & 

Vosniadou, 2015; Hartnett & Gelman, 1998; Meert, Grégoire, & Noël, 2009; Stafylidou & 

Vosniadou, 2004).  

 

Natural Number Bias in arithmetic operations 

As mentioned above, an area to privilege the effect of NNB in rational number reasoning is the 

area of arithmetic operations and more specifically students’ reasoning about the size of the 

result of the operations. Students tend to think that addition and multiplication always result in 

a larger number than the initial numbers involved in the operations, while subtraction and 

division always result in a smaller number (Bell, Swan, & Taylor, 1981; Dixon, Deets, & 

Bangert, 2001; Fischbein, Deri, Nello, & Marino, 1985; Greer, 1987). Well-known to teachers, 

this misconception has been reported in the literature since the 1920s (Thorndike, 1922 as 

mentioned by Krueger & Hallford, 1984). However, recently this phenomenon was re-

approached from a natural number bias perspective (Christou, 2015b; Vamvakoussi, Van 

Dooren, & Verschaffel, 2013; Van Dooren, Lehtinen, & Verschaffel, 2015).  

 It is reasonable to argue that this misconception could stem from NNB, because in the 

context of natural number arithmetic, the result of addition or multiplication between two 

natural numbers (except 0 and 1) is always bigger than the operands. Likewise, the result of 

subtraction or division between two natural numbers is smaller than the minuend and the 

dividend, respectively. This is, however, not necessarily true for non-natural numbers, for 

which the effects of operations depend on the numbers involved. For example, multiplying or 

dividing with a number smaller than 1 results in a smaller or bigger outcome, respectively (e.g. 

5×0.2 is smaller than 5; 5:0.2 is bigger than 5). 

Empirical research has shown that this misconception systematically appear in students’ 

mistakes when solving word problems or when dealing with operations between numbers in a 

strictly numerical context (Bell et al., 1981; Dixon et al., 2001; Fischbein et al., 1985; Graeber, 

Tirosh, & Glover, 1989; Greer, 1987, 1994; Harel & Confrey, 1994; Hart, 1981). For example, 

only 37% of pupils 12 to 13 years old answered correctly that 26.3×0.4 is less than 26.3 (Greer, 

1987) and many students respond that 0.4×0.2=0.8 and not 0.08 (Owens, 1987), which is in-

line with their belief that multiplication should bigger. In the same line, secondary students 

have responded that x > x×2 cannot be true (Van Hoof, Vandewalle, Verschaffel, & Van 

Dooren, 2015) and college students have responded that z×7 cannot be smaller than 7 

(Vamvakoussi, Van Dooren, et al., 2013). 

There is an ongoing discourse considering the origins of the NNB (Rips, Blomfield, & 

Asmuth, 2008). However, scholars who follow a developmental approach to the NNB 

phenomenon (Christou, 2015b; Ni & Zhou, 2005; Smith et al., 2005; Vamvakoussi, Van 

Dooren, et al., 2013; Van Dooren et al., 2015) agree that the origins of this bias can be traced 

in the construction of an initial understanding of numbers which takes place very early on in 

our lives through informal and formal experiences with numbers and quantities. Everyday 

experience with procedures such as counting sets of objects and routines such as repeating the 

sequence of the number words result in a construction of an initial understanding of numbers 

that shares the properties of natural numbers (Gelman, 2000). From this perspective, the 

framework theory approach to conceptual change (Vosniadou, Vamvakoussi, & Skopeliti, 

2008) argues that students’ primal understanding for the number concept is organized into a 

framework theory for number which acquires characteristics that resemble those of the 

mathematical concept of natural numbers. This initial number concept form students’ beliefs, 

their interpretations and their anticipations about the properties of all numbers (Gelman, 2000; 
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Smith et al., 2005; Vamvakoussi, Christou, & Vosniadou, 2018; Vosniadou et al., 2008). In this 

context, the dominance of this initial conception for numbers may result in the NNB 

phenomenon that appears when reasoning with more advanced numbers such as rational and 

real numbers, which appear later in students’ life (Vamvakoussi et al., 2018).  

When it comes to operations between numbers, which is the main focus of this study, 

relying on this initial conception for numbers may create a strong intuition about the results that 

can be expected from whole-number arithmetic [e.g., multiplication makes bigger (Greer, 1994) 

or addition makes bigger (Dixon et al., 2001)], that is erroneously overgeneralized and applied 

to rational number arithmetic. Ample research has shown that students hold these 

misconceptions throughout their school and adult life (Vamvakoussi, Van Dooren, et al., 2013) 

and only mathematical experts seem to manage to disengage from them (Obersteiner, Van 

Hoof, Verschaffel, & Van Dooren, 2015). This shows that following the typical mathematical 

instruction does not result in changing such misconceptions, although it is essential for gaining 

a deep understanding of the number concept. This supports the necessity for special 

interventions designed to target the specific misconceptions as a means to help students 

overcome them.  

 

Interventions that target the NNB in operations between rational numbers 

Few studies have tested interventions that focus on the aforementioned misconception, 

considering the size of the results of the arithmetic operations. Back in the 80s, Onslow (1990) 

designed and implemented a game with number calculations to evoke and falsify students’ 

beliefs that multiplication always makes bigger and division always makes smaller, which 

proved partly effective. In the same line, in an intervention that used clickers and a power point 

presentation to address the same misconception, prospective primary teachers were first asked 

to predict the results of given operations that were later refuted by presenting the correct result 

(Lim, 2011).  

In a recent intervention study, erroneous examples which were used to target the 

multiplication makes bigger misconception, among others misconceptions about decimal 

numbers, also managed to partly reduce the effect of this misconception to students’ responses 

(Isotani et al., 2011). An erroneous example is a description of how to solve a problem or how 

to answer a question, which includes at least one error. Students are challenged to find, explain 

and/or fix the error(s), in order to more deeply learn the domain content and develop 

metacognitive skills (Durkin & Rittle-Johnson, 2012; McLaren et al., 2012). Interventions with 

erroneous examples may reduce misconceptions, especially when they are presented to the 

students in a more or less explicit way (Adams et al., 2014) than in cases where they are not 

(Durkin & Rittle-Johnson, 2012; Isotani et al., 2011). By explicit reference, what is meant is a 

reference to whole number arithmetic which supports these mistakes.  

In summary, the existing interventions that targeted the misconception at hand have all 

suggested the importance of exposing students to their mathematical misconceptions and errors 

before they are overturned, as a means to overcome them (Isotani et al., 2011; Lim, 2011; 

Onslow, 1990). The first two intervention studies (Lim, 2011; Onslow, 1990) shared the idea 

to create a cognitive conflict, as the necessary condition for changing the erroneous conceptions 

the participants hold. The conflict was created as a result of the disequilibrium that appeared 

between the participants’ predictions that were in-line with their intuitive beliefs about the 

results of multiplication and division, and the actual results that were presented afterwards. 

Cognitive conflict describes a situation which contradicts the individuals’ knowledge and 

beliefs (Inhelder, Sinclair, & Bovet, 1974) providing a condition for challenging them that act 

as a first step to also changing them. This was the main technique suggested by Fischbein and 

his colleagues who were some of the first to have reported these misconceptions (Bell, 

Fischbein, & Greer, 1984). It is not by chance that cognitive conflict situations are also proposed 
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for situations where revision of prior knowledge needs to take place for acquiring more 

sophisticated knowledge, in the case of learning with conceptual change (Vosniadou, Ioannides, 

Dimitrakopoulou, & Papademitriou, 2001). That is because cognitive conflict condition 

confronts learners with the impossibility of their current conceptions, creating a cognitive 

disequilibrium that can lead to the discovery and development of new and more sophisticated 

conceptions (Forman & Cazden, 1994).  

For the learners to find inconsistencies between their initial incorrect conceptions, which 

are based on their prior knowledge, and the more sophisticated and correct ones that are to be 

acquired, it is important to find ways to activate both conceptions (Van Den Broek & Kendeou, 

2008). In this direction, in order to create a constructivist learning environment, students’ 

erroneous conceptions should not only be challenged, but the correct alternative should also be 

presented together with a rationale on why to adopt it. This way, the students could resolve their 

initial erroneous conceptions, preventing the possibility of creating new misconceptions, as, 

this way, learners are less likely to simply add new information to their initial conceptions 

which could result in creating new, synthetic misconceptions (Vamvakoussi, Vosniadou, & Van 

Dooren, 2013; Vosniadou et al., 2008). Additionally, presenting students with a reason why the 

specific mistakes occur and with the possible origins of their misconceptions may provide 

further support in students to actively participate in the difficult and cognitively demanding 

process of changing them (Bell et al., 1981; Mangan, 1989; Resnick, 2006). All of the above 

assumptions could be applied in an intervention with the use of a refutational text. 

Refutational texts are texts that aim at achieving conceptual change by explicitly stating, 

refuting and challenging a misconception that lies in prior knowledge (Guzzetti, Snyder, Glass, 

& Gamas, 1993; Hynd, 2001), while at the same time offering a more sophisticated idea to be 

adopted. In refutational texts, false ideas are directly stated and immediately refuted by 

presenting an alternative correct idea in a persuasive manner, using examples and counter 

examples (Lem et al., 2015; Tippett, 2010). In order for a text to be called refutational, it must 

contain two essential elements: First, it must explicitly address the incorrect conception that 

needs to be changed. Second, the text must explicitly state that this conception is incorrect and 

why, providing a new, correct one as alternative (Tippett, 2010). Previous research has shown 

that using refutational texts helped students overcome their misconceptions that resulted in 

erroneous responses and low performance rates in science (Guzzetti et al., 1993; Mason, Gava, 

& Boldrin, 2008; Sinatra & Broughton, 2011; Skopeliti & Vosniadou, 2006; Tippett, 2010), 

especially those with low prior knowledge (Diakidoy, Mouskounti, & Ioannides, 2011). 

Recently, refutational interventions were also used to address misconceptions in mathematics, 

with promising results (Christou, 2012; Lem et al., 2015). 

 

The current study 

In this study, an intervention was designed and implemented with the use of a refutational text 

which targeted the misconception that multiplication always makes the numbers bigger. The 

main hypothesis of the study was that a teaching intervention that uses a refutational text could 

support students to overcome their misconception to think that multiplication always increases 

the size of the operand numbers (Hypothesis 1). It was predicted that the students who would 

take the refutational text (experimental group) would outperform those who would not (control 

group) immediately after the intervention (post-test) and also in a delayed post-test, one month 

after the intervention (retention-test). It was also tested whether a refutational text would have 

the same impact on challenging the specific misconception both on students with high and with 

low level of prior knowledge. In line with previous studies using refutational text in learning 

sciences as mentioned above, it would be expected that students with low prior knowledge 

would benefit from the intervention with the refutational text (Hypothesis 2). A final research 

question of this study was whether the knowledge acquired from the refutational text that 
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referred only to the multiplication makes bigger misconception could be transferred to division 

items to also address the closely related division makes smaller misconception.  

 

 

METHOD 

 

Participants 
The participants were 87 6th grade students from public primary schools in Greece, 11 to 12 

years old. The Experimental Group who received the refutational text included 51 students and 

the Control Group included the rest 36 students. The sample was almost equally shared to boys 

and girls (39 girls). Students in Greece are introduced to rational numbers in 3rd grade and from 

4th grade they are systematically taught the properties of fractions and decimal numbers.  

 

Materials 
Three questionnaires were used as the Pre/Post/Retained-test, with the same design but with 

small differences between the tasks. These questionnaires were also used in former surveys that 

tested the above-mentioned misconceptions (Christou, 2015a, 2015b). The first part of each 

questionnaire included 28 equalities with operations between one given number and one 

missing number, with the result also given (e.g., 6:_=14). Students were asked to answer 

whether it is possible to find a number that could make the given equality true or not and to 

choose one of the two given alternatives: it is possible or it is not possible. The exact question 

was: In the following tasks, you should respond whether you think it is possible to find a value 

for the missing number that would provide the given result.  

The tasks were designed to be either congruent or incongruent. Congruent tasks were in-

line with students’ assumed expectations about the result of multiplication and division (i.e., 

that multiplication always makes the initial numbers bigger and division makes them smaller). 

Thus, in Congruent tasks, the result was bigger than the given operands for multiplication (e.g., 

6×_=11) and smaller for division (e.g., 8:_=5). On the other hand, the result for Incongruent 

tasks was smaller than the given operands for multiplication (e.g. 3×_= 2) and bigger for 

division (e.g., 3:_=8). Examples for each category of tasks are presented in Table 1. The tasks 

were counter-balanced across the above-mentioned categories. More specifically, five items 

were included in each of the four main categories. There were also incongruent tasks used that 

involved addition and subtraction (e.g., 5-_=7) in which the correct responses were that it is not 

possible. These tasks were included to act as buffers to avoid always having it is possible 

responses. The correct response in these tasks is that it is possible, because students at this age 

have not yet been introduced to negative numbers that falsify their initial beliefs that addition 

always makes bigger and subtraction always makes smaller. Eight buffer tasks were included, 

thus, the total number of tasks in each phase of the study were 28.  

 

TABLE 1  

Examples of items per type of operation and congruency 
 

 Multiplication Division Addition Subtraction 

Congruent 3×_ = 8 8:_ = 5   

  6×_= 11 14: _ =5   

Incongruent 3×_= 2 6: _ = 14   

  8×_ = 3 5:_= 8   

Buffers   5+_= 2 5-_= 9 

    7+_=3 5-_= 7 
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The second part of the questionnaire included six inequalities: An operation between 

two numbers was presented in one of the sides of each of them, with the operation sign missing 

(e.g.: 3_10>3). The students were asked to fill the missing operation by choosing one of the 

two given alternatives: multiplication or division. These tasks were also designed to be either 

congruent or incongruent. Incongruent tasks involved one natural number and one rational 

number smaller than 1 (e.g., 6_0.2<6); students who would respond relying on their intuition 

about the results of the two operations would choose the incorrect operation in these tasks. The 

exact question was: What is the correct operation that would make the inequality hold? Choose 

one of the given alternatives.   

 

The refutational text 

The refutational text was brief (167 words), descriptive and written in simple Greek. The 

refutational argumentation and all examples and counter-examples used were focused explicitly 

on multiplication. The text started by stating that it is very common to think that multiplication 

always results in numbers that are larger than the operand numbers and this is often supported 

by examples of multiplication between natural numbers – such examples were also given (i.e., 

2×3=6). This statement was immediately refuted by stating that although this is true for 

multiplication between natural numbers, it is not always true when non-natural numbers are 

involved. The argument was that, actually, when numbers larger than 1 are multiplied, 

multiplication makes both operand numbers bigger. However, when the numbers are smaller 

than 1, the result is smaller than the operand numbers. Two examples were given where one or 

both operand numbers were smaller than 1 (8×1/2=4, 0.7×0.8=0.56) and one example with one 

of the operand numbers being an improper fraction (i.e., which size is bigger than one: 

3×4/3=12/3=4). The examples were accompanied with comments that drew the attention on 

comparing the size of the operands with the results.  

At the end of the refutational text, four comprehension questions were included, in order 

to force students to reflect on the information presented and thus increase the profit of the 

refutational text (Tippett, 2010). The questions were: a) If two numbers are multiplied to each 

other, is the result bigger or smaller than the operand numbers? b) When is it true that the 

multiplication between two numbers results in a number bigger than the first two? c) Can you 

give an example where multiplication can make smaller? d) How would you respond to the 

above question if you had not read the text? Did you change your initial viewpoint? In what 

way? 

 

Procedure 

The students completed the tests in their classroom during their mathematics course with the 

presence of their teacher and the researcher. First, the Pre-test was given to the students of the 

Experimental Group, followed by the refutational text and the Post-test. The Control Group did 

not receive the refutational text or any other instruction about the size of the results of the 

operations between rational numbers.  

When students were given the questionnaires, they were told that they should be aware 

that there is only one correct answer for each question. The questionnaires also contained some 

simple instructions for completing them. For the first part of the questionnaire, students were 

told to choose one of the two given alternatives that best represented their opinion. They were 

also explicitly told that they could think with any kind of number they know. The second part 

of the questionnaire included a note with the meanings of the symbols > and <.  

Students were asked to read the refutational text individually and to answer the four 

questions that followed. Clarification questions were answered. Adequate time was provided to 

complete each of the given questionnaires and to read the refutational text. Specifically, in the 

experimental group, Pre-test lasted 20’, reading the refutational text and answering the 
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comprehension question lasted 45’ and the Post-test lasted 20’; the Retention-test lasted 20’ 

and took place one month after the intervention.  

 

 

RESULTS  
 

Performance in the equalities  

Participants’ responses were scored on a right/wrong basis and mean scores were calculated for 

each category of tasks. Table 2 presents students’ mean performance in the incongruent 

equalities that involved multiplication, for each of the three phases of the experiment. Starting 

with the first part of the questionnaires that included equalities between given and missing 

numbers, students’ mean performance in the incongruent multiplication items showed that the 

experimental group performed slightly better than the control group in the Pre-test; however, a 

Levene’s test verified the equality of variances in the sample (homogeneity of variance) 

(p>.05), indicating that the two groups were comparable. In-line with the main hypothesis of 

the study, in the Post-test, immediately after the intervention with the refutational text, the 

experimental group responded statistically significantly higher in the incongruent equality 

tasks, compared to the Pre-test t(50)=2.006, p=0.05. Additionally, the students from the 

experimental group also performed statistically significantly higher in the Retention-test that 

was administered one month after the intervention, compared with the Pre-Test t(49)=3,758, 

p<.001 (Prediction1).  

On the other hand, the control group did not show significant differences in their 

performance on the incongruent equalities that involved multiplication, either between the Pre-

test and the Post-test t(35)=.924, p=.362 or between the Pre-Test and the Retention-test 

t(35)=1.528, p=.136.  

 

TABLE 2 
Mean performance in incongruent equality tasks in multiplication 

 

 Mean Std. error Min Max 

Experimental Group 

Pre-test .09 .03 0 1 

Post-test .16 .04 0 1 

Retention-test .27 .05 0 1 

Control Group 

Pre-test .06 .02 0 .4 

Post-test .10 .04 0 1 

Retention-test .13 .04 0 1 

 

Testing knowledge transfer 

In order to test possible knowledge transfer from multiplication to division, the same analysis 

was followed for the division tasks, starting from students’ performance in the equalities. Table 

3 presents the mean performance on incongruent division tasks in the equalities that were 

included in the first part of the questionnaire. Students from the control group appeared to 

perform higher than students from the experimental group; however, again, a Levene’s test 

verified the equality of variances in the sample (p>.05), indicating that the two groups were 

comparable. In the Post-test, immediately following the intervention with the refutational text, 

the experimental group responded higher in the incongruent equality tasks in division, 

compared to the Pre-test; however, this difference was close but not statistically significant 

t(50)=1.863, p=0.068. Nevertheless, the experimental group performed statistically 

significantly higher in the Retention-test that was administered one month after the intervention, 

compared with the Pre-Test, t(49)=3,321, p<.05. 
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The control group did not show statistically significant differences in their performance 

on the incongruent division tasks in equalities either between the Pre-test and the Post-test 

t(35)=.595, p=.556 or between the Pre-test and the Retention-test t(35)=.095, p=.925.  

 

Performance in the inequalities  

Quite similar were the results in the second part of the questionnaire that included inequalities 

and students were asked to choose the operation that would make the inequality hold. Students’ 

responses in these tasks were combined between multiplication and division in order to raise 

the statistical power of the analysis that was followed, since the items used were not as many 

as in the first part of the questionnaires that included equalities. In the Pre-test, the students 

from the experimental group appeared to perform higher (M=.34, SE=.05) than the students 

from the control group (M=.28, SE=.06), however, a Levene’s test verified the equality of 

variances in the sample (p>.05), which again shows that the groups are comparable. Students 

from the experimental group performed slightly better in the incongruent inequality tasks in the 

Post-test immediately after the intervention (M=.35, SE=.05) compared with the Pre-test before 

the intervention, but this difference was not statistically significant t(50)=.104, p=.918. 

However, the students from this group performed statistically significantly higher in the 

Retention-test (M=.48, SE=.05), one month after the intervention, than in the Pre-test 

t(49)=2,007, p=.05. 

In addition, students from the control group did not show any statistically significant 

difference in their performance on the incongruent inequalities before the intervention 

compared with either immediately after the intervention (M=.27, SE=.07) t(35)=.291, p=.773, 

or one month later (M=.28, SE=.06), t(35)=.192, p=.849. 

 

TABLE 3 
Mean performance in incongruent equalities tasks in division 

 

 Mean Std. error Min Max 

Experimental Group 

Pre-test .13 .04 0 1 

Post-test .20 .04 0 1 

Retention-test .28 .04 0 1 

Control Group 

Pre-test .19 .05 0 1 

Post-test .20 .06 0 1 

Retention-test .18 .05 0 1 

 

Testing for the effect on low vs high prior knowledge students  

To test whether the intervention had a different effect on students with low versus high prior 

knowledge, an additional analysis was conducted. First, students from the experimental group 

were classified based on a median split on pretest score, with 31 students classified as low prior 

knowledge (i.e., with Pre-test score less than 16 points: M=14.12, SD=1.78, min/max=11/16) 

and 20 students classified as high prior knowledge (i.e., with Pre-test score more than 17 points: 

M=20.1, SD=4.02, min/max=17/34). The performance of each of these groups in the three 

phases of the experiment are presented in Figure 2. 

The group with high prior knowledge students performed statistically significantly better 

on the incongruent multiplication equalities only one month after the intervention with the 

refutational text t(19)=2.896, p=.009, but not in the post-test, immediately after the intervention 

t(19)=.400, p=.694. This shows that the refutational text had long term effects to those with 

high prior knowledge. Considering their ability to transfer their acquired knowledge to the 

division tasks, the group of high prior knowledge did not show any change in its performance 

in the incongruent division equalities immediately after the intervention compared with its 
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performance before [t(19)=.131, p=.897], or one month after the intervention compared with 

its performance before the intervention [t(19)=1.351, p=.192]. 

 

FIGURE 1 
 

 
 

Accuracy rates by Test and by Group for multiplication and division equalities 

 

In-line with the second hypothesis (Hypothesis 2) the group of low prior knowledge performed 

statistically significantly higher on the incongruent multiplication equalities immediately after 

the intervention compared with its performance before it t(30)=2.742, p=.010 and the results 

were retained one month after the intervention with the refutational text t(29)=2.523, p=.017. 

Considering its ability to transfer their knowledge to the division tasks, the low prior knowledge 

group of participants showed statistically significant higher performance on the incongruent 

division equalities immediately after the intervention compared with its performance before 

[t(30)=2.683, p=.012], and these results were retained one month after the intervention 

[t(29)=3.372, p=.002]. 

 

 

DISCUSSION 

 

The present study aimed to test the efficacy of an intervention, using a refutational text that 

targeted the misconception on the part of students to associate multiplication and division with 

a specific size of result, independently of the numbers involved. This misconception is often 

characterized as the multiplication makes bigger misconception (Bell et al., 1984; Fischbein et 

al., 1985; Greer, 1987), because of students’ tendency to think that multiplication always 

provides bigger results than the initial operand numbers. A closely related misconception is to 

also think that division always makes numbers smaller.  

The refutational text that was administered to an experimental group of primary school 

students initially stated the specific misconception at hand and, immediately after, it refuted it 

by presenting examples that showed that multiplication can result in numbers smaller than the 

operand numbers as well. Also, it was specifically mentioned that the tendency to anticipate 

bigger numbers as results of multiplication is due to previous experience with natural numbers, 

where multiplication indeed makes numbers bigger. Students’ responses in the four 

comprehension questions that accompanied the text showed that the students read and 

understood the text. 

 The results showed that the refutational text was successful in helping students partly 

overcome their misconception that multiplication always makes numbers bigger. The students 

from the experimental group scored statistically significantly higher in the incongruent tasks in 
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multiplication after the intervention, and these learning gains were retained one month later. 

The finding that the control group did not show any statistically significant change in their 

responses in the following tests allows to interpret these results as a learning gain acquired from 

the refutational text. These results further support previous findings considering the 

effectiveness of using refutational texts to address misconceptions in science and mathematics 

(Diakidoy et al., 2011; Guzzetti et al., 1993; Hynd, 2001; Lem et al., 2015; Skopeliti & 

Vosniadou, 2006).  

The results of the current study also showed that the refutational text helped students gain 

deeper knowledge considering the size of the results of operations and this appeared in students’ 

higher performing rates in the division equality items that were included in the tests. More 

specifically, students managed to increase the correct response rates in the incongruent division 

equalities, showing traces of knowledge transfer from multiplication to division. It should be 

noted here that the refutational text that was administered to the students referred only to the 

misconception conserving the multiplication and there was no reference to division. Also, the 

examples and counter examples used included explicitly multiplication and were provided in 

the context of equalities. Thus, higher performing rates in division tasks for the experimental 

group in the Pest and the Retention-test may be interpreted to result from transferring the 

knowledge that was acquired from multiplication to division, indicating deeper knowledge 

gains (Perry, 1991; Rittle-Johnson & Alibali, 1999).  

In the same line were also the results from the second part of the questionnaires that 

included inequalities. In order to respond correctly in these tasks, someone should think more 

carefully and apply the properties of the operations that were raised in the refutational text. The 

statistically significant higher performing rates in these tasks after the intervention only for the 

experimental group may also be interpreted as a learning profit from reading the refutational 

text, which may help students acquire deeper knowledge of the properties of operations rather 

than staying on the procedural knowledge level (Rittle-Johnson & Alibali, 1999).  

Finally, in line with the second hypothesis of the study, the results showed that not only 

students with high prior-knowledge, but also the low prior knowledge students profited by the 

specific intervention. Actually, interestingly, the group of low prior knowledge students 

appeared to have profited more than those with high-prior knowledge. Specifically, low prior 

knowledge students’ learning gains appeared immediately, as well as one month after the 

intervention, while the group of students with high prior knowledge appear to have profited 

only at the long run. Also, the group of students with low prior knowledge appeared to transfer 

their learning gains from multiplication to division much more than the students from the high 

prior knowledge group. Future studies using qualitative methods with clinical interviews could 

provide more insights for this discrepancy.  

This study has several theoretical and educational implications. The findings suggest that 

the refutational text may help students partly disengage from their misconceptions in 

mathematics and implies that they could be included more often in the mathematical textbooks 

together with the expository text already used. However, the results showed that the 

misconception was far from being eradicated. Students’ mean performance in the incongruent 

tasks of the Post-test and the retention-test continued to be very low and, thus, the positive 

effects of refutational text are considered as moderate. This shows that the multiplication makes 

bigger and the division makes smaller misconceptions are difficult to overcome, supporting 

previous findings in the field, and showing that they are not just mistakes that students do, but 

they stem from certain beliefs that lie in deep rooted knowledge structures that needs revision 

(Christou, 2015b; Ni & Zhou, 2005; Obersteiner et al., 2015; Vamvakoussi, Van Dooren, et al., 

2013; Van Hoof et al., 2015). For students to fully disengage from misconceptions like those 

that stem from the natural number bias, they would need to develop a number concept that goes 

beyond the natural numbers and is closer to the mathematical concept of number, such as 
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incorporating the properties of the rational and the real numbers (Smith et al., 2005). This entails 

learning with conceptual change, because, in this process, the students will need to 

fundamentally reorganize their initial framework for numbers which is organized around the 

symbols and properties of natural numbers (Vamvakoussi, Vosniadou, et al., 2013; Vosniadou 

et al., 2008). Interventions with refutational texts such as the one implemented in the present 

study may assist students in this process which is expected to be difficult and time consuming.  

Despite certain drawbacks, the results of this study are very important mainly because 

they show that a short intervention with a refutational text can make a difference in the process 

of challenging the misconceptions at hand. This could suggest that such texts can be included 

in more powerful learning environments that are designed to teach the properties of rational 

numbers in ways that would provide bigger help for students to exceed their difficulties and 

misconceptions. These learning environments should include meaningful representations about 

the operations between rational numbers. Teaching other models for multiplication than the 

repeated addition model which supports the multiplication makes bigger misconception, such 

as the area model, the fractional part of a quantity model or the scaling model for 

multiplication, could be beneficial for the students in the long run (Prediger, 2008). The same 

holds for the partitive model for division that is associated with the division makes smaller 

misconception, which could be presented together with other models such as the quotative or 

measurement model of division that are more susceptible to the properties of operations 

between rational numbers (Bell et al., 1984; Fischbein et al., 1985; Lim, 2011).  

Still, refutational argumentation should be used with caution. Together with other 

persuasion techniques, refutational texts have been criticized as authoritative, manipulative and 

male dominated (Anders & Commeyras, 1998 for a thorough discussion see Hynd, 2001). From 

our perspective, believing that, by presenting the mathematically correct conception in a 

refutational argumentation format, students are forced to unquestionably accept it, as it 

underestimates their ability to think critically and to self-construct own beliefs and conceptions. 

However, taking these critiques under consideration, using that refutational argumentation 

methodology to start a class discussion about the targeted misconceptions could prove an even 

more profitable and more inclusive teaching technique than when just presenting to the students 

the arguments against their incorrect beliefs and ideas (Inagaki, Hatano, & Morita, 1998). Of 

course, all these plausible teaching alternatives need to be empirically tested. 
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