
7REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION, 13(1), 7-33, 2019

Overview of the Computer Programming

Learning Environments for primary education

GEORGIOS FESSAKIS1, VASSILIS KOMIS2,
ANGELIQUE DIMITRACOPOULOU1, STAVROULA PRANTSOUDI1

1Department of Pre-school Education

and Educational Design
University of the Aegean

Greece
gfesakis@aegean.gr

psemdt16023@aegean.gr
adimitr@aegean.gr

2Department of Educational Sciences
and Early Childhood Education

University of Patras
 Greece

komis@upatras.gr

AbstrAct
Over the past decade, the assessment of the general educational value of computer
programming and computational thinking has been constantly increasing and, as a
result, they are introduced to increasingly younger ages. In parallel, educational
programming environments are significantly progressing, providing a variety of
options for different ages. This paper presents an overview of the modern learning
programming environments for primary education and proposes a classification
system with categories corresponding to the technological and educational
dimensions of the area. The paper aims to support teachers in learning design for the
interdisciplinary approach of programming and the development of computational
thinking.

KEY WOrDs
Educational programming languages, taxonomy, learning design, computational
thinking, coding for learning

8

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

résumé
Au cours des dix dernières années, l’évaluation de la valeur éducative de la
programmation informatique et de la pensée informatique s’est constamment
accrue et, par conséquent, elles ont été introduites à des âges de plus en plus
jeunes. Parallèlement, les environnements de programmation éducatifs progressent
considérablement, offrant une variété d’options pour les différents âges. Cet
article présente un aperçu des environnements d’apprentissage de programmation
pour l’enseignement primaire et propose un système de classification avec des
catégories correspondant aux dimensions technologiques et éducatives. L’article
vise à soutenir les enseignants dans la conception de l’apprentissage pour une
approche interdisciplinaire de la programmation et le développement de la pensée
informatique.

mOts-clés

Langages de programmation éducationnelles, taxonomie, ingénierie d’apprentissage,
pensée informatique, codage pour apprendre

IntroductIon

In recent years, computer programming has been at the forefront of the interest to
the educational community since it is considered as an activity of great educational
value, because both of utilitarian and pedagogical reasons. The utilitarian reasons are
related to the predictions concerning the gap between the available jobs related to
the Science Technology Engineering and Mathematics (STEM) fields and the number of
students who choose to study in these fields internationally (Langdon et al., 2011 in
Portelance, Strawhacker, & Bers, 2016; Smith, 2016). Analyst data support the view that
economy, in order to innovate and flourish, will need well-trained programmers who
will also possess interdisciplinary skills. Furthermore, programming is considered as a
key skill for the approaching and understanding of Informatics, Science, and Technology
in general. Therefore, by integrating computer programming into general education, the
number of students who will possibly choose future studies in STEM cognitive subjects
is expected to rise.

In parallel, pedagogical reasons for the integration of programming into general
education are projected. Papert (1980) appears as a pioneer supporter of the general
educational value of computer programming, and according to him programming
can develop a series of higher forms of thinking such as problem solving, analytical
and creative thinking. At the same time, DiSessa (DiSessa & Abelson, 1986; DiSessa,
2000) considers programming environments as reconstructive media (Reconstructive
Computational Media) or as enhanced or enriched written languages, which allow their

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 9

Overview of the Computer Programming Learning Environments for primary education

users to organize their thinking with clarity. While computationally tackling a problem,
programmers try to “teach” a solution of the problem to the “learner” of Informatics
by expressing, observing and clarifying their thinking, and receiving feedback from the
execution of the solution, thus making not only the development of a solution, but also
the cultivation of metacognitive skills easier for them. Based upon these views, Guzdial
& Solloway (2002) also present programming as a modern form of literacy and so do
the creators of the Scratch programming environment (Resnick et al., 2009).

A critical decision related to the successful integration of computer programming
into education concerns the selection of the proper language or programming
environment to be used. The problem of choosing the appropriate educational
programming environment is a difficult one, considering that the whole set of available
languages is multidimensional and multitudinous. In addition, the basis of the problem
has been broadened as it now concerns, not only teachers and educational designers,
but also parents, with different priorities in each case. A classification of the available
languages based on educational criteria may assist in solving the problem of selection.
Pre-existing/Previous classifications of programming environments available (Fessakis &
Dimitracopoulou, 2006; Kelleher & Pausch, 2005) need to be updated to include the
more recently available options and conceptually cover modern educational approaches.
In this paper we propose an up-to-date classification of the educational programming
environments, taking into consideration the teacher, the educational designer, and the
parent-guardian. We mainly focus on the educational environments and languages that
have been built for learning in the context of different scientific fields, and not just for
learning programming itself as an end. The following sections present the theoretical
background to support the different factors of the programming language selection,
followed by the proposed classification, and finally a discussion of the classification and
the emerging research directions.

theoretIcal background

The problem of programming language selection
The field of programming languages is multidimensional, including a big number of
programming languages, as can be seen by examining relevant collections (History of
programming languages, 2019; Levenez, 2017; Timeline of programming languages, 2019).
In addition, modern software systems are often developed using a combination of
programming languages. As a result, programming environments which are independent
of a specific language or which can support the programming process for different
languages have emerged. Therefore, the programming environment is something
different from the programming language (Guo, 2017). For example, the Java language
can be used with a simple text editor, or the NetBeans environment, or the Eclipse

10

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

IDE, and so on. Similarly, the syntax of the Logo language can be the basis for different
programming environments, such as pencilcode.net or turtleacademy.com.

Considering that learning a programming language requires the investment
of a considerable amount of time, selecting the programming language and/or the
programming environment to be used has proved to be a crucial issue. The selection
of the programming environment for introducing primary school students into
computer programming constitutes the problem approached in the present paper.
If the purpose is the development of professional programming skills, the problem is
very different from the case of primary education, where programming is mainly used
as an epistemological tool in the context of computational thinking (Fessakis, Komis,
Mavroudi, & Prantsoudi, 2018). In the case of primary education, the classification of
educational programming environments seems to be more useful than the classification
of languages using technological criteria.

Given that computer programming in primary education is considered as a
general educational asset, the criteria of selecting a programming environment and
corresponding educational tasks should mainly focus on pedagogical and didactic
dimensions. The developmental suitability of the environment and the support it
provides to the students’ thinking and ability of creative problem solving, is given higher
priority. Also, the potential of creative expression through digital art forms is equally
important to mathematical problems. Whereas the programming model is selected
based on the learning ease and the problem area that makes them accessible to the
students.

Therefore, from an educational point of view, it would be interesting to classify the
available programming environments for beginners, which could provide information
on issues such as: which problem fields could be used to produce learning activities,
which are the cognitive requirements of the environment, the age range for which the
environment is appropriate, how oriented to the computing engine or the problem
area the system of the adopted program representation is, which languages and which
program models are supported, if implementation of interdisciplinary activities is
possible, consistency with modern teaching and learning concepts, etc. Based on these
dimensions, we define the main axes of the educational programming environment area
described in the next section.

Axes of the educational programming environment area
Considering the technological categories of the programming languages, the pedagogical
features which govern the problem of selection and the need to group existing
environments by rules of relevance and similarity to facilitate the selection of the
proper educational programming environment, five basic axes of analysis of the area,
similar to previous classifications (Fessakis & Dimitracopoulou, 2006) are proposed:

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 11

Overview of the Computer Programming Learning Environments for primary education

A. Axis of grading of the computing system ‘abstraction’: The position of an environment
on this axis gives us an idea of how close the generated programs are in the
problem area compared to the computing machine area. The lower the level of
abstraction of the computing system of an environment, the more the produced
programs use terms that depend on the machine architecture (e.g. register,
adder, memory slot, etc.). In contrast, in high-level abstraction environments the
produced programs use terms of the problem area (e.g. velocity variable, etc.).
The abstraction level of an educational environment determines the possibility
of using it in general learning activities, in the context of various subjects, or
whether it will be mainly used for programming and computer architecture
training.

B. Axis of developmental-age suitability: This certain axis provides information about
the age range that is appropriate for the use of each environment. The age
distribution of the programming environments can, to some extent, be dictated
by the general skills they require, but its empirical validation is more often an
open problem.

C. Axis of supported programming paradigm/model: Supporting multiple programming
models is common in modern environments and allows freedom of expression
for the programmer. The programming model is important as it greatly determines
the ease of learning and the problem area that can be used in designing learning
activities.

D. Axis of supported syntax programming languages: Most programming environments
adopt and support syntax of programs according to the rules of at least one
programming language. Dispute over which languages are more appropriate does
not seem to be easily reconciled, therefore the support of multiple alternative
syntaxes constitutes an interesting feature.

E. Axis of abstraction approach to the programming process: In this axis we place
educational environments based on the abstract scheme they dictate to the
programmer for the programming process and the program execution. For
instance, in most procedural environments the programmer, when coding,
looks like he is preparing a series of “commands” for the computer-executor.
In contrast, in logic programming, the programmer defines a set of events and
a set of rules, whereas the “execution” of the program begins by submitting a
query concerning the consistency of a sentence compared to the knowledge
base-program. In object-oriented programming, the programmer defines object
classes, with attributes and methods, organized in hierarchies, while the program
is executed when objects from different classes begin to interact with each other
and the user. A popular metaphor which helps to add meaning in programming is
that of a theatrical scene. In this case, the programmer looks like a scriptwriter-

12

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

director who defines the objects-characters that play a role in the context
of a play. The execution of the program can be compared to placing objects
on a scene where they can interact, based on their programmed behaviors,
with each other and with the program user. The axis of the abstraction scheme
of the programming process is educationally significant because it determines
the addition of meaning to the programming process, and therefore greatly
circumscribes the complexity of the problems which can be tackled, the
developmental suitability, and the attractiveness of a programming environment.

In this context, the purpose of the present paper is to propose a classification system
of programming environments. The proposed classification aims to ease educational
designers to select, based on educational criteria, the most suitable environment,
depending on the educational situation (educational design) and also aid researchers
studying the didactic value of programming in primary education.

In the following, initially the proposed categories of educational environments
for computer programming are presented together with typical examples. Then, the
categories regarding the axes mentioned above are discussed. Finally, the presentation
of the categories is summarized, relevant concluding remarks are presented, and
research directions are proposed.

educatIonal programmIng envIronments

Logo family programming environments
Environments in this category are based on the Logo language and the eternal ideas
of Papert (Papert, 1980). The dynamics of Logo concepts is based on their ability
to adapt so as to be appropriate for different ages; additionally, they allow for the
interdisciplinary approach of concepts and problems in order to be applicable in the
teaching of various subjects. The Logo language and Paperts’ turtles are still used
and evolving while inspiring the creation of other systems that are presented below,
organized in subcategories.

Roamers
Systems in this category are often referred to as floor turtles (Figure 1) (e.g. of the
companies https://www.terrapinLogo.com and http://www.valiant-technology.com).
These are tangible implementations of the Logo language “turtle”, which are able to
accept simple commands of movement and orientation (one step forward, one step
backward, turn a few degrees to the right or left). Frequently roamers can leave a trace
while moving, using markers. Roamers, in practice, take various forms such as bees,
cars, etc.

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 13

Overview of the Computer Programming Learning Environments for primary education

Figure 1

Educational Robots - Bee-Bot/Pro-Bot/Blue-Bot roamers of TerrapinLogo

Learning activities usually implemented in such systems, include: a) exit of the roamer
from a maze which can be painted on a mat and/or created by obstacles (e.g. styrofoam),
b) point-to-point movement (path execution), c) drawing shapes, etc.

These systems are preparation environments for introducing students of the first
grades of primary education in more complex and realistic programming environments,
of the same family at least. In addition to the ease of use and administration, roamers
are popular because of their compatibility to the curriculum and in particular to the
concepts of orientation (front, back, right, left), distance (far, near), and numeracy, due to
the distinct nature of movement which is based on fixed-spaced steps and angles (e.g.
square or 45˚). The lack of a requirement of writing and reading knowledge, computer
use, and complex constructions such as robotics kits, makes the roamers ideal for the
young ages of 3-6 years old. The purposefulness of using roamers in kindergartens
is also supported by relevant studies (Pekarova, 2008; Komis & Misirli 2016; Komis,
Romero & Misirli, 2017).

Software roamers
Software roamers are created as simulations of physical roamers with a program on a
computer. The roamer is replaced by a software entity (an agent) illustrated in various
forms, such as a turtle, a vehicle, and so on. These environments allow for the children’s
gradual distancing from floor turtles and their approach to the typical Logo. The basic
training activities remain the same; however, the implementation of computational
problems, such as those of a typical programming lesson, is also feasible.

14

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

Figure 2

User interface of Ladybug Leaf

The main advantage of direct providing of visual feedback remains. In some cases,
environments in this category offer useful tools, such as the virtual protractor, which
facilitate programming and linking to other subjects like mathematics. Software roamers
cover the gap between children who have learnt reading and writing and children who
do not possess or are in the process of acquiring these basic skills (ages 5-7).

Typical examples of this category are the MicroWorlds JR (http://www.microworlds.
com) (Figure 3) environment of the LCSI company and the NLVM micro-application
series named Ladybug (Figure 2), which are freely available in the National Library
of Virtual Manipulatives collection of the UTAH State University (http://nlvm.usu.
edu/). In the case of Ladybug the commands are represented with virtual tiles and the
program is formed as a sequence of tiles (tile programming). The user can modify the
program by adding or removing commands and execute all of it, or up to a point. These
environments have been experimentally studied, with positive results in terms of their
attractiveness and learning value (Fessakis, Gouli, & Mavroudi, 2013).

Logo programming environments
Indicative of the impact and timelessness of the Logo language is the fact that new
programming environments are being developed for it, in all operating systems, even
today. Several of these are freely accessible via the Internet and are accompanied by
extensive documentation and lively user communities which facilitate learning. A key
characteristic that distinguishes them from the systems of the previous category is
their textual orientation in programming. They use a text editor to compose programs
and an area-window to view the results of the program execution (usually tortoise
drawings).

Older systems in this category include (a) free-of-charge simple implementations,
such as the KTurtle developed under the KDE Edutainment project (http://edu.kde.

Figure 3

User interface of LCSI Microworlds JR software

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 15

Overview of the Computer Programming Learning Environments for primary education

org/kturtle/) or the MSWLogo (http://www.softronix.com) and the FMS Logo (http://
fmsLogo.sourceforge.net/), and b) commercially available versions such as Terrapin
Logo (https://www.terrapinLogo.com).

Latest implementations are environments such as the Pencilcode (https://pencilcode.
net), the Turtle Academy (http://www.turtleacademy.com/), the Turtle Art combining
Logo with visual programming (http://turtleart.org/), the MaLT+ (http://en.etl.ppp.uoa.
gr), the NetLogo (http://ccl.northwestern.edu/netLogo/) with multiple turtles and a
large collection of examples of scientific simulations and the StarLogo TNG/NOVA
(http://education.mit.edu/) with emphasis on complex dynamic systems. The contexts
of this category can be used to develop algorithmic thinking, CT, and introduction to
advanced programming concepts, such as variable, subprogram, parameter passing, variable
range, structured programming, event-driven programming, concurrent programming.

Expanded Logo environments - Microworld development environments
These are complex microworld development environments combining the Logo
ideas with those of tile-based software development. Example of this category is the
LCSI Microworlds environment (http://www.microworlds.com/solutions/mwex.html)
(Figure 4).

Figure 4

User interface of the LCSI Microworlds EX software

This environment provides enriched multimedia editing capabilities, a complex graphical
interface, and features to support the constructivist approach to programming as a
learning tool. Version Logo Microworlds EX was one of the first educational programming
environments to work with LEGO Mindstorms educational robotics environment. The
ability to use Logo in educational robotics makes it even more attractive as a pedagogic
infrastructure investment.

Figure 3

16

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

Figure 5

Example of microworld with Logo in e-slate

Another notable environment in this category is E-slate (Figure 5). According to its
designers, E-Slate is an exploratory learning environment. It provides a workbench for the
creation of highly dynamic software with rich functionality, by non-programmers. Educational
activity ideas can be turned into software with minimal authoring effort in the form of interactive
Microworlds that contain specially designed educational components. Microworlds software
can be easily constructed by plugging components in various configurations. The behavior of
both components and Microworlds can be programmed into a Logo-based scripting language
(http://e-slate.cti.gr/).

Visual programming environments for kids
Environments in this category are mainly featured by the fact that they use visual
programming techniques. The programming language elements are visually represented
by blocks which are assembled into more complex syntactic structures and eventually
into programs. The use of keyboard is limited to entering parameters into commands.
The representation of syntactic limitations of the language in the structure of the building
blocks prevents the occurrence of syntactic errors because assembling can be feasible
only in such a way that the produced command is syntactically correct. The building blocks
are selected from organized pallets and so users do not need to memorize dozens of
commands before they focus on programming. Languages are interpreted, and commands
can be tested even when the program is incomplete. The model of programming is driven
by events, simultaneous procedural programming, while the metaphor of the machine for
the programmer is the object control in a theatrical scene. Another important feature
of these systems is that their learning is not dependent on knowledge of the English
language, thus facilitating even prereaders in their use.

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 17

Overview of the Computer Programming Learning Environments for primary education

Scratch
Scratch (Resnick et al., 2009) was developed by the Lifelong Kindergarten Learning Group
at MIT in 2007. It is a programming environment in which users create programs based
on the model of the theatrical scene, using a visual programming language. Programmers
have a scene (central screen of the application) at their disposal (Figure 6) in which they
create objects (actors and scenery) by choosing from a collection or drawing their own.

Figure 6

User interface of the Scratch 2 software

Objects on the scene can interact with each other and with the user based on a predefined
by the programmer behavior. The behavior of the objects is defined by dragging building
blocks that represent actions-commands which refer to an object. These building blocks
comprise the Scratch programming language (Maloney et al., 2008; 2010). Scratch as
a visual programming language facilitates programming, experimenting and tinkering.
Scratch enables the creation of electronic games, cartoons, interactive stories, and more.
It allows users to share their creations on the Internet, in a lively community located at
the web address: http://scratch.mit.edu. The design of Scratch intentionally favors novice
programmers. In addition to producing applications, as an educational environment it aims
at developing basic skills, such as creative thinking, clear communication, systematic analysis,
efficient collaboration, iterative-progressive design, and lifelong learning skills. Newer versions
of Scratch are online and do not need installation. A variation of the Scratch language is
Snap! (Build Your Own Blocks) (http://snap.berkeley.edu/) which allows for, among other
things, the definition of subprograms, a feature that is not available in Scratch.

ScratchJr
ScratchJr (http://www.scratchjr.org/) (Portelance, Strawhacker, & Bers, 2015) is a
variation of the Scratch programming environment for younger children. ScratchJr

18

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

was developed by MIT in collaboration with the DevTech Research Group at Tufts
University, after a major redesign to be adapted to the needs and abilities of children
aged 5-7 (Figure 10). ScratchJr (Figure 7) is an introductory programming language
which allows even pre-school children to develop games and interactive stories. It
implements the logic of Scratch, where programming is done by sequencing and nesting
tiles which represent the statements and commands of the language, and also supports
the metaphor of the scene, whereas children can draw characters and scenes and
record or compose sounds. ScratchJr is distributed as an Android and iOS application
and targets at the generation of children growing up with tablets. ScratchJr paves the
way for research on the Didactics of Programming, Computational Thinking, and the
effects of its use in preschool age.

Figure 7

User interface of ScratchJr

Figure 8

User interface of Hopscotch

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 19

Overview of the Computer Programming Learning Environments for primary education

Hopscotch
Hopscotch (https://www.gethopscotch.com/) is an educational and entertaining
programming environment for children, with great potential and a conceptual structure
similar to Scratch. As in Scratch, computer programming is approached as a means
of creative expression for everyone. With Hopscotch it is possible to explore and
approach key concepts of Informatics, such as: abstraction, variables, logical expressions,
conditional branches, repetitions etc. in a playful environment. On the website there is a
plethora of examples and supportive material. Hopscotch (Figure 8) is more relevant
to Scratch than ScratchJr, but until the advent of Jr it was perhaps the only equivalent
in iOS environment.

Blockly
Scratch made programming with blocks so popular that Google has developed a library
for creating such languages at will. Blockly (https://developers.google.com/blockly/) is
a client-side JavaScript library for creating visual block programming languages and
editors. It is a project of Google and is open-source under the Apache 2.0 License. It
typically runs in a web browser, and visually resembles Scratch (Fraser 2015; Pasternak,
Fenichel, & Marshall, 2017). In essence, using this library one can create Scratch-like
languages and environments with great ease. Examples of educational applications with
Blockly can be explored at: https://blockly-games.appspot.com.

Logic and object-oriented programming environments
In this category we quote educational programming environments which adopt a
programming model different from the usual procedural one. For example, there is
Toontalk (http://www.toontalk.com/) (Morgado, 2005; Morgado & Kahn, 2008; Morgado,
Cruz, & Kahn, 2003), proposing a special approach to programming for preschool
children in which extensive imaginative metaphors for programming concepts framed in
a virtual cartoon world are used. A similar, interesting, different programming approach
with visual rules for young children is provided by the Viscuit environment (Harada
& Potter, 2003). In parallel, Agentsheets (Repenning & Ioannidou, 2004) and Stagecast
(Seals et al., 2002) systems support a more common programming model by combining
agents, visual programming and logical rules such as those of the Prolog language.
It is reasonable for these systems to be considered as appropriate for preparing
introduction to logic programming with Prolog, or languages such as Racket (http://
racket-lang.org/) which combines Scheme and Lisp.

Languages which fully adopt the model of object-oriented computer programming
constitute a special subcategory. Predominantly based on the Smalltalk object-oriented
language, the Squeak language was initially developed (Guzdial & Rose, 2001; Ingalls et al.,
1997) (http://squeak.org/) and, based on this, the educational e-toys environment (http://
www.squeakland.org/), making it more accessible to younger children. Programming

20

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

in Squeak e-toys (Morge, Narayan, & Tagliarini, 2010) (http://etoysillinois.org/) is very
different and it is worth experimentally investigating its effect on general education in the
light of computational thinking development. It is worth noting that Scratch was originally
developed in the Squeak language, just as e-toys. Also noteworthy is the fact that e-toys
is a main educational programming environment included in the student computer of the
OLPC project (http://one.laptop.org/) along with TurtleArt, Squeak and Scratch.

Commercial programming learning environments for entertainment
purposes
The spread of children’s education in programming and the attribution of entertainment
character to relevant activities, a series of commercially available environments for
learning programming has been produced. These environments present a selective
collection of design choices of the respective research environments without proposing
certain innovations. Commercially available environments raise issues of social
inequalities on the access to learning which, however, are not essential since there
are also free, high-quality environments available. Furthermore, environments in this
category show a tendency to commercialize children’s entertainment and education
through the Internet and ICT. Some of the most well-known systems are indicatively
presented here for the purpose of completeness of the categorization system. Their
range of topics concerns a wide variety of activities, from familiarization with a specific
programming language, problem solving with Logo-like code, to game creation (e.g.
http://stencyl.com/).

Kodable: Kodable (http://www.kodable.com/) is a commercial programming learning
environment with tiles that is accompanied by an integrated teaching administration
system. The parents’ arguments are related to the future ability of finding a job. The
programming language looks more like that of LadyBug (described below), rather than
that of Scratch. Students are asked to program the exit from a labyrinth of an agent
which accepts a limited repertoire of simple commands (Figure 9). The use of Kodable
is possible even before someone learns writing or arithmetic. It is accompanied by a
curriculum in which, in addition to general programming skills, objectives from other
curricula, such as Mathematics, are also cultivated. It runs on iOS.

Tynker: Tynker (https://www.tynker.com/) is a commercially available integrated teaching
support system on computer programming through the Internet. The system includes
a programming environment with Scratch-like tiles, which is accompanied by detailed
learning activities organized in full curricula. Its use facilitates parents, teachers and
principals in managing courses and monitoring results. By providing detailed lesson
plans, this certain environment promises applicability even by teachers with little
programming knowledge.

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 21

Overview of the Computer Programming Learning Environments for primary education

Figure 9

User interface of Kodable

Physical Computing environments
The term Physical Computing refers to the broad field of interactive physical system
development, that is electro-mechanical compositions controlled by software and
using sensors, motors, switches, and other elements to respond to the analogue
world. Programming and Computational Thinking are basic components of physical
programming and so are electronics and engineering. In general, physical computing is
a basic platform for the integrated implementation of the STEAM approach and for
this reason it has also been at the forefront in recent years. In this section we present
subcategories of physical programming environments. It appears that the term physical
programming comes to combine a series of similar areas of Informatics applications
that pre-existed.

Educational robotics environments
Educational robotics kits include some programmable microcontroller-microprocessor,
connected with inputs and outputs to a printed circuit board, which can be programmed
using a computer programming environment. The program is transferred from the
computer to the microcontroller and can be run autonomously until a new one is
installed. On the main circuit of the microprocessor, devices such as motors, lamps,
switches, etc., as well as sensors (of temperature, light, sound, etc.) are connected
for the assembly of automated control systems, which usually have moving parts or
also comprise whole self-moving ones. The construction of a robot in this way is a
rich, interdisciplinary activity involving Physics, Mathematics, Electronics, Mechanics and
Informatics problems (Figures 10-12).

22

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

Figure 10

The educational robot IntelliBrain-Bot by RidgeSoft

Figure 12

Constructions with Lego WeDo and Scratch

The cost of the Robotics kits, and physical programming in general, is an inhibiting
factor for its massive spread, yet it reaches the students through various promotional
policies.

Typical examples in this category include the LEGO Mindstorms (Figure 11)
and Wedo (for younger children) kits (Figure 12), the IntelliBrain-Bot by RidgeSoft
(IntelliBrain™-Bot) (Figure 10), the microcontroller, sensor, and device kits of Parallax
with industrial specifications, the VEX Robotics, the Thymio robot (https://www.thymio.
org) for easy introduction without any manufacturing challenges, and the pre-school
KIBO (Sullivan, Bers, & Mihm, 2017).

The activities proposed in the context of educational robotics are widely varied,
interdisciplinary and they integrate programming into the STEAM approach. They may
include, from the problem of maze exit, to the creation of robotic pets playing board
games or musical instruments. Some indicative possible projects are described in detail
in Ferrari, Ferrari & Hempel (2001), while on the internet there is a plethora of available

Figure 11

Robot constructed with the LEGO Mindstorms
system

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 23

Overview of the Computer Programming Learning Environments for primary education

resources, varying from ideas for constructions up to complete curricula. There are
also communities of enthusiastic amateurs who can keep the interest unabated, while
the combination of robotics with Rube Goldberg machines (https://www.rubegoldberg.
com/) can provide an entertaining dimension to the range of topics.

Electronics, automatic control and signal processing environments
The category of physical programming includes environments emphasizing on hardware
programming. The lowest level of abstraction concerns programming at the level of
circuits. At the next level, there are the control systems (of data collection, signal
processing and device driving) through a PC or their simulations. At the top level, there
is the assembly of systems controlled by stand-alone programmable microprocessors.
These systems are also referred to as embedded or internet of things, and are complex
systems that concern the upper grades of primary school. In what follows, we describe
the subcategories and provide examples of programming environments.

Circuit simulators
In circuit simulators the implementation of algorithms occurs on a physical level,
with hardware, and requires the understanding of computer architecture, electronics
concepts of automatic control, information representation and signal processing.
Indicative systems of this category are LTspice (http://www.linear.com/solutions/ltspice),
TINA (https://www.tina.com/), and MultiMedia Logic Simulator (https://sourceforge.net/
projects/multimedialogic/), along with the Technology package by Yenka (https://www.
yenka.com/technology/). Multimedia Logic Simulator is an older educational package
for experimentation and exploratory learning which unfortunately is not supported
enough any longer, but it is mentioned here because its design aims to project digital
logic as a programming language and because it has been accompanied by remarkable
books and relevant educational material, such as the work of Maxfield (1998; 2009).
Perhaps in the future, this direction of programming at a physical level will recover
the interest of the educational community, combined with modern platforms such as
Arduino.

Automatic control systems and their simulators
Another series of environments concerns systems that emphasize on the concept of
automatic control. This concept is certainly included in educational robotics systems,
however, systems in this category usually avoid the complex construction problems of
robots. In automated control system activities students focus on the logic-programming
of a control system, which is a generalized system consisting of a set of inputs and
outputs.

24

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

Figure 13

User interface of the Flowol software by Robot Mesh

Figure 14

Go Control Software by Data Harvest Group

Figure 15

User interface of the Logicator software by Economatics Education Ltd

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 25

Overview of the Computer Programming Learning Environments for primary education

Students do not program a computer but they specify a control system of another
system. A widespread representation system in environments of this category is
reported to be the flowchart, while the state diagrams for finite state automata and
the logic system flowcharts are also used. The logic representations of the systems
to be controlled are usually called ‘mimics’ and resemble microworlds. For example,
instead of students controlling a real greenhouse in order to achieve ideal plant growth
conditions, they can control a virtual representation of it on the computer. Some
examples of environments in this category include Flowol by Robot Mesh (Figure 13),
Go Control Software by the Data Harvest Group (Figure 14), and Logicator software
by Economatics Education Ltd (Figure 15).

Miscellaneous unplugged applications and environments
This category includes learning scenarios for programming that do not need a computer
to be implemented (unplugged), such as those from: the collection of the Csunplugged
project (http://csunplugged.org/) and the Bebras organization (http://bebras.org/). We
also include activities from other institutions’ initiatives, such as Code.org (http://code.
org), the Code-to-Learn Foundation (http://codetolearn.org), and CoderDojo (http://
coderdojo.com). This category also includes a series of board games, through which
children can be introduced to programming or practice their knowledge of it (Crawley,
2014). In the category various titles (some are games) are also included, such as: Lightbot
Jr 4+ Coding Puzzles (1-3), Move the Turtle. Programming for kids (1-6). The grades for
which they are considered to be appropriate are reported in the brackets.

summary of the educatIonal programmIng
envIronments categorIes

In this section, we briefly summarize the classification of educational programming
environments for primary education and outline the proposed categories in the
pedagogical axes described in ‘Theoretical background’.

In relation to the 2006 classification (Fessakis & Dimitrakopoulou, 2006), it is now
apparent that from the era of the dominance of Logo and its adaptations there has
been a transition to the era of a plethora of different commercial and free options for
introducing children, even from pre-school age, to programming and computational
thinking. The options range from games, to robotics kits and integrated teaching systems.
The effect of Scratch, and visual programming in general, on the design of most systems
is evident. The prevention of syntax errors and the visualization of the code, which
mainly contribute to visual programming languages, had a great impact on the field.
Moreover, modern environments support multimedia, different programming models
and new forms of learning activities. The category of visual programming environments

26

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

combined with the physical programming category with educational robotics kits
and microprocessors is today at the forefront of the educational interest as it is a
platform for the STEAM approach (Blikstein 2013; Przybylla & Romeike, 2014) and CT
development. Another major development is the category of comprehension activities
for programming concepts without the use of computers (unplugged). Comparing the
above, it is clear that the landscape is much different since the previous classification
(Fessakis & Dimitrakopoulou, 2006). The effects on research and education practice are
significant. The pedagogical axes categories presentation follows.

A. Axis of grading of the computing system ‘abstraction’
Educational programming environments diversify depending on how much they require
the programmer to think in terms of computing machine architecture or in terms of
the problem area. In cases we focus on using computer programming for problem-
solving activities, we are interested in systems with a high level of abstraction from the
computing machine. On the contrary, there are cases in which we wish to focus on details
of the implementation of programming, so we are interested in transparency towards
the machine. In the extreme case of low abstraction, which is of minimum concern in
primary education, we identify the programming environments in symbolic language,
the physical programming environments, and the robotics environments, whereas at
the high levels of abstraction we identify the visual programming environments, the
Logo environments, and the unplugged computing environments.

B. Axis of developmental-age suitability
In Table 1 the educational programming environments and the respective ages proposed
for their implementation are presented. Table 1 also presents the arrangement of the
categories in the axis (B). Age correspondence is indicative and based on manufacturers’
suggestions and authors’ estimates.

Other dimensions that are of interest in selecting an educational programming
environment are the programming model it supports, the language whose syntax it
uses, and the metaphor it uses for programming as a whole process. The presentations
of the corresponding axes (C-E) (Section 2.2) are analyzed next.

C. Axis of supported programming paradigms/models
Supported models of educational programming environments include procedural,
visual, event-driven, object-oriented, parallel, concurrent, distributed, integrated, logic,
and programming with Artificial Intelligence techniques, etc. The programming model
is important as it determines the expressive power of the environment and the
problem area that can be used to design activities. Therefore, familiarizing students
with multiple models is an advantage (Stephenson et al., 2005) because it provides them
with alternative ways of computational thinking. In addition, each model has different

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 27

Overview of the Computer Programming Learning Environments for primary education

requirements from the student in its conquest and implementation, and research in
Didactics is needed for the comparison of alternative models. The procedural model
has been studied disproportionately more than the rest, especially at the primary
education level.

Table 1

Developmental suitability of educational programming environments

Age intervals in years

Educational Learning Environment 4-6 6-8 8-12 12-15

Logo FAMILY

ROAMERS ✓

SIMULATED ROAMERS ✓

Logo ENVIRONMENTS ✓ ✓

EXP. Logo - MICROWORLDS ✓ ✓

GEN/ZED TURTLEWORLDS ✓

VISUAL PROGRAMMING ✓ ✓ ✓ ✓

PHYSICAL PROGRAMMING

ED. ROBOTICS ✓ ✓ ✓ ✓

ELECTRONICS/A. CONTROL ✓ ✓ ✓

MICROCONTROLLERS ✓

LOGIC & OBJ.-OR. PROGRAMMING ✓ ✓

PSEUDOCODE ✓

UNPLUGGED ✓ ✓ ✓ ✓

D. Axis of supported syntax programming languages
Several times the programming language that one is asked to use is given and is not left
as an option to the teacher. Language selection is often considered essential in order,
for example, to utilize the time a student will spend on a language that is considered
competitive in terms of market demands, or can be used in other courses as well. Of
the languages used in the environments, the more widely known ones are Logo, Basic,
Pascal, Java, and Javascript which are considered older, while more languages, such
as Python, Ruby and Blockly-like graphical languages have been added. Programming

28

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

environments which simultaneously support more than one language are of particular
interest.

E. Axis of abstractional approach of the programming process
Each environment assumes and displays an abstractional approach for the programming
process. This approach affects students’ perception of the meaning of programming.
From this perspective, roamers show their programming as a process during which
“I make the roamer do something”. Then, the student interacting with a Logo turtle
is asked to make an abstract software entity do something. The next model introduces
certain turtleworlds that support the use of multiple turtles (or miniature-robots), thus
programming appears as a process during which “I make entities interact in order to do
something.” In the case of educational robotics, students follow the previous schema,
not with software entities, but with devices constructed by themselves, so in this case
programming can be described as an activity during which “I make devices that interact
to do something”. In automated control systems the student “controls a system”. The
theatrical scene metaphor is a very convenient abstractional schema for introducing
children to simultaneous, event-driven programming. It is the Scratch model that has
pinpointed programming for children since first grade of primary school.

conclusIon-dIscussIon

Computer programming is considered a learning and developmentally beneficial activity
for children (Papert, 1980; DiSessa 2000). Through engagement with programming,
children can develop higher forms of thinking such as problem-solving ability, creative
thinking and metacognitive skills. Selecting the appropriate educational programming
environment is a critical decision. The overview of educational programming
environments ascertains a variety of available systems which can cover the full range
of student primary school ages, concern the most common programming models, and
utilize the most known programming languages. Each environment adopts a different
schema for the process and the purpose of programming, the simplest being that of
roamers and the most complex that of educational robotics. For a long time, Logo
dominates as a stand-alone programming language and as a control environment for
educational robotic arrangements in children’s programming. The increasing interest
in the development of CT, along with the development of modern, specially designed
environments for children’s programming, have changed the landscape and require
adaptation of the research agenda and educational practice. The proposed overview
and classification of educational programming environments is expected to facilitate the
educators’ teaching design and orientate the related educational research. In particular,
the overview and classification can highlight some of the most significant developments
in the field of educational programming environments such as the following:

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 29

Overview of the Computer Programming Learning Environments for primary education

• Programming environments are now multimedia environments, using a theatrical
scene and “actors” as a basic model-metaphor for the programming. They are not
just about moving the turtle and controlling its trail. Modern environments with the
use of visual programming languages make coding easy, while they require minimum
typing and memorizing of commands and syntactic rules. Particularly, syntactical
errors are completely avoided, thus making a series of research topics of didactics
outdated (Pea 1986; Spohrer & Soloway 1986; Stephenson et al., 2005).

• The types of applications-tasks that pupils are asked to concern with are very diverse
and rich. After the turtle graphics and mathematical/geometrical problems, young
programmers are now mainly aiming at creative expression and entertainment by
creating artifacts such as interactive cards/posters, stories, animations and games.

• Today’s programming environments can be used even before familiarization with
writing and reading words and numbers. Thus, the question about the indicative
teaching order and the manner of activity interactions arises.

• Children’s programming environments and supportive material are now available not
only on desktop computers but also on portable devices (tablets/iPads), rendering
programming accessible outside school too and parent involvement more feasible.

• There is an increasing tendency to commercialize programming learning, with
several environments circulating as commercial products. This point makes the role
of public education more essential, aiming at the elimination of potential inequalities.

• Finally, a series of educational robotics product collections in the form of advanced
games is available for young children, giving them more opportunities of engaging in
more integrated, specific and authentic activities that will familiarize boys and girls
with the basic concepts and methods of digital technology.

• Physical programming is expected to spread more over the next few years, along
with the development of the STEAM approach and the interdisciplinary approach
in general.

• Computational Thinking provides a conceptual framework for the integration
of programming into the various subject areas. The use of scientific computing
environments and computing modeling in education will be further extended.

• Artificial Intelligence and dynamic data analysis will become the new scope of
computer programming in primary education. They are elements of the modern
world with great economic and social consequences and investment in related
knowledge has been rendered essential.

The combination of the aforementioned ascertains the fact that the available technology
has surpassed in pace the corresponding educational research, whose main body
concerns the Logo language in primary education. New research directions, in relation to
effectiveness of programming environments, their long-term effects, transition to adult
programming environments, curricula, learning approaches, didactics of computational

30

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

thinking, types of learning activities, teachers’ role and preparation, etc., can be realized
and contribute to the optimal utilization of programming teaching at this educational
level. Considering the above analysis, we can describe new research directions for the
Didactics of computer programming and, in general, Computational Thinking in primary
education. Particularly, it is useful, under the Didactics of Informatics perspective, topics
such as the following to be studied:
• Comparison of the impact of different programming models on familiarizing students

with programming (cognitive difficulties, proposed interventions, performance, etc.)
• Comparison of the effect of the abstractional approach of the programming process

on familiarizing students with programming.
• Comparison of the effect of the type of task-result (e.g. mathematical algorithms,

game, interactive story) on familiarizing students with programming.
• Emotional factors in programming learning. For instance: which emotions are

associated to each environment.
• Interdisciplinary approach of computer programming and its role in the STEAM

approach by studying and improving the comprehension of concepts involved in
related cognitive fields, such as Mathematics and Science.

• Study of the transition from visual programming to text programming and from
educational to professional one.

• Study of the interaction of programming learning with other general skills such as
problem-solving skills, spatial thinking, language and creativity.

• Emergence of the possibilities and boundaries of different environments as means
of constructing digital artifacts of expression, thought and mental experimentation
by students.

• Study of ways to remove stereotypes and other barriers for access to programming
by both genders.

Several of the research topics proposed in the present paper remain open since the
previous classification (Fessakis & Dimitrakopoulou, 2006). The systematic research
on the Didactics of programming and Computational Thinking will contribute to the
better utilization of the available wealth of programming environments in the school
context.

references

Blikstein, P. (2013). Gears of our childhood: Constructionist toolkits, robotics, and physical
computing, past and future. In Proceedings of the 12th International Conference on Interaction
Design and Children (pp. 173-182). New York, USA: ACM.

Crawley, D. (2014). 12 games that teach kids to code – and are even fun, too. Retrieved from http://
venturebeat.com/2014/06/03/12-games-that-teach-kids-to-code/.

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 31

Overview of the Computer Programming Learning Environments for primary education

DiSessa, A. (2000). Changing minds. Computers, Learning, and Literacy. Cambridge, MA, USA: MIT
Press.

DiSessa, A., & Abelson, H. (1986). BOXER: A reconstructive computational medium. Communications
of the ACM, 29(9), 859-868.

Ferrari, M., Ferrari, G., & Hempel, R. (2001). Building robots with Lego mindstorms: The ultimate tool
for mindstorms maniacs. Rockland, MA: Syngress.

Fessakis G., & Dimitracopoulou A. (2006). Review of educational environments for programming:
Technological and pedagogical dimensions. THEMES in Education, 7(3), 279-304.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kindergarten
children in a computer programming environment: A case study. Computers & Education, 63,
87-97.

Fessakis, G., Komis, V., Mavroudi, E., & Prantsoudi, S. (2018). Exploring the scope and the
conceptualization of computational thinking at the K-12 classroom level curriculum. In M. S.
Khine (Ed.), Computational Thinking in the STEM Disciplines: Foundations and Research Highlights.
(pp. 181-212). Switzerland: Springer.

Fraser, N. (2015). Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond) (pp. 49-50). Atlanta, GA, USA: IEEE Computer Society.

Guo, P. (2017). Building tools to help students learn to program. Communications of the ACM,
60(12), 8-9.

Guzdial, M. J., & Rose, K. M. (2001). Squeak: Open personal computing and multimedia. River, NJ,
USA: Prentice Hall PTR.

Guzdial, M., & Soloway, E. (2002). Log on education: Teaching the Nintendo generation to pro-
gram. Communications of the ACM, 45(4), 17-21.

Harada, Y., & Potter, R. (2003). Fuzzy rewriting: Soft program semantics for children. In Human-
Centric Computing Languages and Environments, IEEE CS International Symposium on (pp. 39-46).
Auckland, New Zealand: IEEE Computer Society.

History of programming languages. (2019). In Wikipedia, The Free Encyclopedia. Retrieved
from https://en.wikipedia.org/w/index.php?title=History_of_programming_languages.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back to the future: The story of
Squeak, a practical Smalltalk written in itself. ACM SIGPLAN Notices, 32(10), 318-326.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of pro-
gramming environments and languages for novice programmers. ACM Computing Surveys,
37(2), 83-137.

Komis, V., & Misirli, A. (2016). The environments of educational robotics in Early Childhood
Education: Towards a didactical analysis. Educational Journal of the University of Patras UNESCO
Chair, 3(2), 238-246.

Komis, V., Romero, M., & Misirli, A. (2017). A scenario-based approach for designing educational
robotics activities for co-creative problem solving. In Advances in Intelligent Systems and
Computing (pp. 158-169). New York: Springer.

Langdon, D., McKittrick, G., Beede, D., Khan, B., & Doms, M. (2011). STEM: Good jobs now and for
the future. Retrieved from https://goo.gl/rmyDfU.

Levenez, E. (2017). Computer Language History. Retrieved from https://www.levenez.com/lang/.
Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice: Urban

youth learning programming with scratch. ACM SIGCSE Bulletin, 40(1), 367-371.

32

g e o r g i o s f e s s a k i s , va s s i l i s k o m i s , a n g e l i q u e d i m i t r a c o p o u lo u , s tav r o u l a p r a n t s o u d i

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions on Computing Education, 10(4), 16, 1-15.

Maxfield, C. (1998). Designus Maximus unleashed! (unabridged & unexpurgated): Banned in Alabama!
Boston: Newnes.

Maxfield, C. R. (2009). Bebop to the Boolean boogie: An unconventional guide to electronics. Amsterdam:
Elsevier, Newnes.

Morgado, L. C. (2005). Framework for computer programming in preschool and kindergarten. Phd
Thesis. Retrieved from http://www.scribd.com/ doc/24041133/Framework-for-Comput-
er-Programming-in-Preschool-and-Kindergarten.

Morgado, L., & Kahn, K. (2008). Towards a specification of the ToonTalk language. Journal of Visual
Languages & Computing, 19(5), 574-597.

Morgado, L., Cruz, M. G. B., & Kahn, K. (2003). Working in ToonTalk with 4-and 5-year olds. In P.
Isaías & A. Palma dos Reis (Eds.), International Association for Development of the Information
Society - IADIS International Conference e-Society 2003 (p. 988). Lisbon, Portugal: IADIS.

Morge, S., Narayan, S., & Tagliarini, G. (2010). Squeak etoys modeling and simulation tool:
Empowering students and teachers to create, explore, collaborate and interact. In Z. Abas,
I. Jung & J. Luca (Eds.), Proceedings of Global Learn Asia Pacific 2010 - Global Conference on
Learning and Technology (pp. 589-591). Penang, Malaysia: Association for the Advancement of
Computing in Education.

Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. New York: Basic Books Inc.
Pasternak, E., Fenichel, R., & Marshall, N. A. (2017). Tips for creating a block language with blockly.

In 2017 IEEE Blocks and Beyond Workshop (B&B) (pp. 21-24). Raleigh, NC, USA: IEEE.
Pea, R. (1986). Language-independent conceptual ‘bugs’ in novice programming. Journal of

Educational Computing Research, 2(1), 25-36.
Pekarova, J. (2008). Using a programmable toy at preschool age: Why and how? In Workshop

Proceedings of SIMPAR 2008 Intl. Conf. on Simulation, Modeling and Programming for Autonomous
Robots (pp. 112-121). Venice, Italy: SIMPAR.

Portelance, D. J., Strawhacker, A., & Bers, M. U. (2016). Constructing the ScratchJr programming
language in the early childhood classroom. International Journal of Technology and Design Edu-
cation, 26(4), 489-504.

Przybylla, M., & Romeike, R. (2014). Physical computing and its scope – towards a constructionist
computer science curriculum with physical computing. Informatics in Education, 13(2), 241-254.

Repenning, A., & Ioannidou, A. (2004). Agent-based end-user development. Communications of the
ACM, 47(9), 43-46.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009).
Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.

Seals, C., Rosson, M. B., Carroll, J. M., Lewis, T., & Colson, L. (2002). Fun learning stage cast creator:
An exercise in minimalism and collaboration. In Proceedings - IEEE 2002 Symposia on Human
Centric Computing Languages and Environments, HCC 2002 (pp. 177-186). Toronto, ON, Canada:
IEEE.

Smith, M. (2016). Computer Science for all: Learn about President Obama’s bold new initiative to
empower a generation of American students with the computer science skills they need to thrive
in a digital economy. Retrieved from https://obamawhitehouse.archives.gov/blog/2016/01/30/
computer-science-all.

REVIEW OF SCIENCE, MATHEMATICS and ICT EDUCATION 33

Overview of the Computer Programming Learning Environments for primary education

Spohrer J., & Soloway E. (1986). Novice mistakes: Are the folk wisdoms correct? Communications
of the ACM, 29(7), 624-632.

Stephenson, C. et al. (2005). The new educational imperative: Improving high school Computer Science
Education. Final Report of the CSTA Curriculum Improvement Task Force, ACM. Retrieved
from http://csta.acm.org.

Sullivan, A., Bers, M. U., & Mihm, C. (2017). Imagining, playing, & coding with KIBO: Using KIBO
robotics to foster computational thinking in young children. In Proceedings of the International
Conference on Computational Thinking Education, 2017. Wanchai, Hong Kong. Retrieved from
https://kinderlabrobotics.com/research-articles/.

Timeline of programming languages. (2019). In Wikipedia, The Free Encyclopedia. Retrieved
from https://en.wikipedia.org/w/index.php?title=Timeline_of_programming_languages.

