Introducing an old calculating instrument in a new technologies environment: a praxeological analysis of students' tasks using different registers
Abstract
The Chinese abacus is the resource presented in this paper, to teach and learn number sense and place-value system at primary level. The Chinese abacus can be material, virtual (software) or drawn on a worksheet. We present three tasks and analyse them in term of techniques and relative knowledge. We show how these tasks can be solved by students in different registers (material, software, paper-and-pencil, fingers, oral) which is important for both students' understanding and teachers' activity.
Keywords
Full Text:
PDFReferences
Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3, 205-224.
Artigue, M. (2009). Rapports et articulations entre cadres théoriques: le cas de la théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 29(3), 305-334.
Asher, M. (2002). Mathematics elsewhere: an exploration of ideas across cultures. Princeton: Princeton University Press.
Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers’ development of number-sense. Digital Experiences in Mathematics Education, 1(1), 7 27.
Bartolini, M. G., & Martignone, F. (2014). Manipulatives in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 365 372). Dordrecht: Springer Netherlands.
Barton B. (2008). The language of mathematics. Telling mathematical tales. New York: Springer.
Block, D., Nikolantonakis, K., & Vivier, L. (2012). Registres et praxis numérique en fin de première année de primaire dans trois pays. Annales de Didactique et de Sciences Cognitives. 17, 59-86.
Bueno-Ravel, L., & Harel, C. (2016). Le calcul mental à l'école: apports du boulier chinois. MathemaTICE, 51. Retrieved from http://revue.sesamath.net/spip.php?article873.
Chevallard, Y. (1992a). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12(1), 73-112.
Chevallard, Y. (1992b). Fundamental concepts in didactics: perspectives provided by an anthropological approach. In R. Douady & A. Mercier (Eds), Research in Didactics of Mathematics (pp.131-167). Grenoble: La Pensée Sauvage.
Chevallard, Y. (1999). L'analyses des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221-266.
Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (Ed.), Proceedings of CERME 4 (pp. 21-30). Barcelone: Fundemi IQS.
Chevallard, Y. (2007) Readjusting didactics to a changing epistemology. European Educational
Research Journal, 6(2), 131-134.
Duval, R. (1996). Quel cognitif retenir en didactique des mathématiques? Recherches en Didactique des Mathématiques, 16(3), 349-382.
Duval, R. (1998). Signe et objet (I): trois grandes étapes dans la problématique des rapports entre représentation et objet. Annales de Didactique et de Sciences Cognitives, 6, 139-163.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of Mathematics. Educational Studies in Mathematics, 61(1), 103 131.
Gerdes, P. (2009). L'ethnomathématique en Afrique. Maputo: CEMEC.
Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218.
Gueudet, G., Bueno-Ravel, L., & Poisard, C. (2014). Teaching Mathematics with technology at the kindergarten level: resources and orchestrations. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds), The Mathematics teacher in the digital era: an international perspective on technology focused professional development (pp. 213 240). Dordrecht: Springer Netherlands.
Guin, D., Ruthven, K., & Trouche, L. (2005). The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument. Boston, MA: Springer US.
Kervran, M., Poisard, C., Le Pipec, E, Sichler, M., & Jeudy-Karakoç, N. (2015). Langues minoritaires locales et conceptualisation à l’école : l’exemple de l’enseignement des mathématiques en breton. In M. Kervran & P. Blanchet (Dir.), Langues minoritaires locales et éducation à la diversité des dispositifs didactiques à l'épreuve (pp. 65-82). Paris: L'Harmattan.
Lagrange, J.-B. (2005). Using symbolic calculators to study Mathematics. In D. Guin, K. Ruthven & L. Trouche (Eds), The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument (pp. 113 135). Boston, MA: Springer US.
Maschietto, M., & Trouche, L. (2010). Mathematics learning and tools from theoretical, historical and practical points of view: the productive notion of mathematics laboratories. ZDM, 42(1), 33 47.
Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the pascaline and Cabri Elem e-books in primary school mathematics. ZDM, 45(7), 959 971.
Poisard, C. (2005a). Les objets mathématiques matériels, l'exemple du boulier chinois. Petit x, 68, 39-67.
Poisard, C. (2005b). Ateliers de fabrication et d’étude d’objets mathématiques, le cas des instruments à calculer. Thèse de Doctorat, France, Université de Provence, Aix-Marseille I.
Poisard, C., & Gueudet, G. (2010). Démarches d’investigation : exemples avec le boulier virtuel, la calculatrice et le TBI. Journées mathématiques de l’INRP, Lyon, France.
Poisard, C., Gueudet, G., & Bueno-Ravel, L. (2011). Comprendre l’intégration de ressources technologiques en mathématiques par des professeurs des écoles. Recherches en Didactique des Mathématiques, 31(2), 151-189.
Poisard, C., Kervran, M., Le Pipec, E., Alliot, S., Gueudet, G., Hili, H., Jeudy-Karadoc, N., & Larvol, G. (2014). Enseignement et apprentissage des mathématiques à l'école primaire dans un contexte bilingue breton-français. Revue Spirale, 54, 129-150.
Poisard, C., Riou-Azou, G., D'hondt, D., & Moumin, E. (2016). Le boulier chinois : une ressource pour la classe et pour la formation des professeurs. MathemaTICE, 51. Retrieved from http://revue.sesamath.net/spip.php?article883.
Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(2), 111 126.
Riou-Azou, G. (2014). La construction du nombre en grande section de maternelle avec un boulier chinois virtuel. MathemaTICE, 40. http://revue.sesamath.net/spip.php?article625.
Rau, P.-L. P., Xie, A., Li, Z., & Chen, C. (2016). The cognitive process of Chinese abacus arithmetic. International Journal of Science and Mathematics Education, 14(8), 1499 1516.
Sun, X., Berinderjeet, K., & Novotna, J. (2015). Primary Mathematics study on whole numbers, Conference proceedings of ICMI Study 23. Macao, China: University of Macau.
Trouche, L. (2005). An instrumental approach to Mathematics learning in symbolic calculator environments. In D. Guin, K. Ruthven, & L. Trouche (Eds), The didactical challenge of symbolic calculators: turning a aomputational device into a mathematical instrument (pp. 137 162). Boston, MA: Springer US.
Verillon, P., & Rabardel, P. (1995). Cognition and artefacts: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10, 77-102.
Zaslavsky, C. (1973/1999). Africa counts. Number and pattern in African cultures. Third edition. Chicago: Lauwrence Hill Books.
DOI: https://doi.org/10.26220/rev.2839
View Counter: Abstract | 397 | times, and PDF | 139 | times
Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.
Pasithee | Library & Information Center | University of Patras