Relativity of simultaneity in secondary school: an analysis based on the theory of the conceptual fields

MARÍA RITA OTERO, MARCELO ARLEGO

Abstract

In this paper, we present results about the conceptualization of the relativity of simultaneity and the operational invariants used by high school students. The Theory of Conceptual Fields is adopted to design, analyse and evaluate a didactic sequence to teach the basic aspects of the Theory of Special Relativity in secondary school. Only the situations related to the relativity of simultaneity are analysed here. An inductive categorization is constructed from 256 protocols generated in the implementations carried out in four 11th grade courses (15-16 years) (N = 128) in a public school of Colombia. The categorization identifies the resolutions of the students and the operative invariants that they use in each situation. The results indicate that the proposed situations would produce the emergence and awareness of the operational invariants linked to the relativity of Galileo, which would open the way to the conceptualization of the relativity of simultaneity in secondary school.

Keywords

Relativity of simultaneity, theory of conceptual fields, secondary school, Special Theory of Relativity

Full Text:

PDF

References

Angotti, J. A., Caldas, I. L., Pelizoicar Neta D., Pernambuco, M. M., & Rudinger, E. (1978). Teaching relativity with a different philosophy. American Journal of Physics, 46, 1258-1262.

Arlego, M., & Otero, M. R. (2017). Teaching basic special relativity in high school: the role of classical kinematics. International Journal of Physics and Chemistry Education, 9(1), 9-12.

Dimitriadi, K., & Halkia, K. (2012). Secondary students’ understanding of basic ideas of Special Relativity. International Journal of Science Education, 34(16), 2565-2582.

Dimitriadi, K., Halkia, K., & Skordoulis, C. (2010). An attempt to teach the Theory of Special Relativity to students of upper secondary education. In G. Çakmakci & M. F. Tasar (Eds), Proceedings of ESERA 2009 (pp. 183-187). Ankara, Turkey: Pegem Akademi.

Hewson, P. (1982). Α case study of conceptual change in special relativity: the influence of prior knowledge in learning. European Journal of Science Education, 4, 61-76.

Hosson, C., Kermen, I., & Parizzot, E. (2010). Exploring students’ understanding of reference frames and time in Galilean and special relativity. European Journal of Physics, 31, 1527-1538.

Otero, M. R., & Arlego, M. (2016). Secuencia para enseñar la Teoría Especial de la Relatividad en la Escuela Secundaria. Argentina: Ed. UNICEN.

Otero, M. R., Arlego, M., & Prodanoff, F. (2015). Design, analysis and reformulation of a didactic sequence for teaching the Special Theory of Relativity in high school. Revista Brasileira de Ensino de Física, 37(3), 3401-10.

Otero, M. R., Arlego, M., & Prodanoff, F. (2016). Teaching the basic concepts of the Special Relativity in the secondary school in the framework of the Theory of Conceptual Fields of Vergnaud. Il Nuovo Cimento, 38C(108), 1-13.

Otero, M. R., Fanaro, M. A., Sureda, P., Llanos, V. C., & Arlego, M. (2014). La Teoría de los Campos Conceptuales y la conceptualización en el aula de Matemática y Física. Buenos Aires: Editorial Dunken.

Panse, S., Ramadas, J., & Kumar, A. (1994). Alternative conceptions in Galilean Relativity: Frames of references. International Journal of Science Education, 16, 63-82.

Pérez, H., & Solbes, J. (2003). Algunos problemas en la enseñanza de la relatividad. Enseñanza de las Ciencias, 21(1), 135-146.

Pérez, H., & Solbes, J. (2006). Una propuesta sobre enseñanza de la relatividad en el bachillerato como motivación para el aprendizaje de la física. Enseñanza de las Ciencias, 24(2), 269-279.

Pietrocola, M., & Zylbersztajn, A. (1999). The use of the principle of relativity in the interpretation of phenomena by undergraduate students. International Journal of Science Education, 21(3), 261-276.

Posner, G., Strike, A., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66, 211-227.

Saltiel, E., & Malgrange, J. (1980). Spontaneous´ways of reasoning in elementary kinematics. European Journal of Physics, 1, 73-80.

Scherr, R. E., Shaffer, P. S., & Vokos, S. (2001). Student understanding of time in special relativity: simultaneity and reference frames. American Journal of Physics, Physics Education Research Supplement, 69(S1), 24-35.

Scherr, R. E., Schaffer, P. S., & Vokos, S. (2002). The challenge of changing deeply held student beliefs about the relativity of simultaneity. American Journal of Physics, 70, 1238–48.

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2/3), 133-170.

Vergnaud, G. (2013). Pourquoi la théorie des champs conceptuels? Infancia y Aprendizaje, 36(2), 131-161.

Villani, A., & Arruda, S. (1998). Special Theory of Relativity, conceptual change and History of Science. Science & Education, 7(2), 85-100.

Villani, A., & Pacca, J. (1987). Student’s spontaneous ideas about the velocity of light. International Journal of Science Education, 9, 55-66.


DOI: https://doi.org/10.26220/rev.2878

View Counter: Abstract | 435 | times, and PDF | 129 | times



Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Pasithee | Library & Information Center | University of Patras