Robotique pédagogique à l’école primaire : quelle activité des élèves de Classe Préparatoire (6-7 ans) et quels apprentissages dans une séquence conçue par l’enseignant ?

SANDRA NOGRY

Abstract

This paper analyses the pupil’s activity during a robotic educational sequence designed and conducted by the teacher in first grade class. Video recording are analyzed in order to characterize the activity of the pupils using instrumental approach. The analysis is focused on instrumental and conceptual geneses. It characterizes the social and instrumental mediations involved in these geneses. The study highlights the role played by graphic representations in the process of abstraction during learning of programming skills.

Keywords

Educative robotics, primary school, learning, micro-genetics approach, activity analysis

Full Text:

PDF

References

Baron, G. L., & Drot-Delange, B. (2016). L’informatique comme objet d’enseignement à l’école primaire française? Mise en perspective historique. Revue Française de Pédagogie, 195, 51-62.

Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157.

Béziat, J. (2017). Compétences pédagogiques et compétences informatiques. Un difficile alliage. Revue Internationale des Technologies en Pédagogie Universitaire. Retrieved from http://www.ritpu.org/pages/entrevues/.

Crahay, M. (1987). Logo, un environnement propice à la pensée procédurale. Revue Française de Pédagogie, 80(1), 37-56.

Duval, R. (1995). Sémiosis et pensée humaine. Bern: Lang.

Gaudiello, I., & Zibetti, E. (2013). La robotique éducationnelle: État des lieux et perspectives. Psychologie Française, 58(1), 17-40.

Gélis, J. M., & Haspekian, M. (2016). Nouvelles connaissances à enseigner et nouveaux outils. Situations, repères didactiques et genèses instrumentales. Paper

presented at the Colloque AREF, Mons, Belgique.

Harel, I. E., & Papert, S. E. (1991). Constructionism. Norwood, NJ: Ablex Publishing.

Haspekian, M. (2017). Computer science in mathematics new curricula at primary school: New tools, new teaching practices? In G. Aldon & J. Trgalova (Eds.), Proceedings of the 13th International Conference on Technology in Mathematics Teaching (ICTMT 13) (pp. 23-31). Lyon, France: Université Claude Bernard Lyon 1.

Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245-255.

Komis, V., & Misirli, A. (2015). Étude des processus de construction d’al¬gorithmes et de programmes par les petits enfants à l’aide de jouets programmables. In B. Drot-Delange, G.-L. Baron & E. Bruillard (Éds.), Informatique en éducation : Perspectives curriculaires et didactiques. Clermont-Ferrand: Presses Universitaires Blaise-Pascal.

Misirli, A., & Komis, V. (2014). Robotics and programming concepts in Early Childhood Education: A conceptual framework for designing educational scenarios. In C. Karagiannidis, P. Politis & I. Karasavvidis (Eds.), Research on e-Learning and ICT in Education (pp. 99-118). New York: Springer.

Mitnik, R., Nussbaum, M., & Soto, A. (2008). An autonomous educational mobile robot mediator. Autonomous Robots, 25(4), 367-382.

Mulligan, J., & Highfield, K. (2008). Young children’s engagement with technological tools: The impact on mathematics learning. In Proceedings of International Congress in Mathematical Education 11 (pp. 1-8). Monterrey, Mexico: International Congress of Mathematics Education.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books, Inc.

Piaget, J. (1974). La prise de conscience. Paris: Presses Universitaires de France.

Rabardel, P. (1995). Les hommes et les technologies. Paris: Armand Colin.

Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students' types of generalization. Mathematical Thinking and Learning, 5(1), 37-70.

Rogalski, J. (2015). Psychologie de la programmation, didactique de l’informatique déjà une histoire… In B. Drot-Delange, G.-L. Baron & E. Bruillard (Éds.), Informatique en éducation : Perspectives curriculaires et didactiques. Clermont-Ferrand: Presses Universitaires Blaise-Pascal.

Siegler, R. S. (2006). Microgenetic analyses of learning. In D. Khun & R. Siegler (Eds.), Handbook of Child Psychology (vol. 2, 464-504). New York: John Wiley & Sons.

Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 45(3), 373-394.

Spach M. (2017). Activités robotiques à l’école primaire. Quelle place du scénario pédagogique ? Les limites du co-apprentissage. Thèse de doctorat, Université Paris-Descartes, France.

Strebelle, A., Mélot, L., Ducarme, A., & Depover, C. (2017). Analyse des comportements sociaux dans le cadre d’un apprentissage collectif de la programmation d’un robot de sol. STICEF, 24(1). Retrieved from http://sticef.univ-lemans.fr/num/vol2017/24.1.8.strebelle/24.1.

strebelle.pdf.

Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(2-3), 133-170.


DOI: https://doi.org/10.26220/rev.3121

View Counter: Abstract | 682 | times, and PDF | 520 | times



Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Pasithee | Library & Information Center | University of Patras