The construction of spatial awareness in early childhood: the effect of an educational scenario-based programming environment
Abstract
A teaching intervention – educational scenario – was implemented by educators to 306 pre-schoolers in 17 classrooms. It was designed to foster children’s spatial awareness so as to help them construct a model of spatial concepts with reference to a mobile object around the space, the programmable toy Bee-Bot. The educational scenario encompasses instruments designed for gathering data of the pre and post children’s representations about direction and orientation concepts, the teaching activities conceived to deliver these concepts by using the programmable toy and finally instruments designed for evaluation. The evaluation took place after three weeks implementation and the results indicated statistically significant difference in children’s pre and post-test intervention representations and consequently construction of spatial knowledge not only to a functional context but moreover to a more symbolic one.
Keywords
Full Text:
PDFReferences
Bers, M., & Horn, M. (2010). Tangible programming in early childhood: Revisiting developmental assumptions through new technologies. In I. R. Berson & M. J. Berson (Eds.), High-Tech tots: Childhood in a digital world (pp. 49-69). North Carolina: Information Age Publishing.
Bishop, A. J. (1980). Spatial abilities and mathematics achievement: A review. Educational Studies in Mathematics, 11, 257-269.
Blades, M., & Spencer, C. P. (1987). The use of maps by 4 to 6 year old children in a large scale maze. British Journal of Developmental Psychology, 5, 19-24.
Blades M., Blaut, J., Davizeh, Z., Elguea, S., Sowden, S., Soni, D., Spencer, C., Stea, D., Surajpauli, R., & Uttal, D. (1998). A cross-cultural study of young children's mapping abilities. Transactions of the Institute of British Geographers, 23, 269-277.
Carlson, L. S., & White, H. S. (1998). The effectiveness of a computer program in helping kindergarten students learn the concepts of left and right. Journal of Computing in Childhood Education, 9(2), 133-147.
Clements, H. D., & Nastasi, B. K. (1999). Metacognition, learning, and educational computer environments. Information Technology in Childhood Education Annual, 1, 5-38.
Clements, H. D., & Sarama, J. (2002). The role of technology in early childhood learning. Teaching Children Mathematics, 8(6), 340-343.
Clements, H. D., & Sarama, J. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.
DeLoache, J. D. (2000). Dual representation and young children’s use of scale models. Child Development, 71(2), 329-338.
Denis, B., & Baron, G. L. (Éds.) (1994). Regards sur la robotique pédagogique - Actes du quatrième colloque international sur la robotique pédagogique. Paris: INRP.
Depover, C., Karsenti, T., & Komis, V. (2007). Enseigner avec les technologies. Québec, Canada: Presses de l’Université du Québec.
Germanos, D., Oikonomou, A., & Tzekaki, M. (1997). A spatio-pedagogical approach to the learning process in early childhood: An application on space-mathematical concepts. European Early Childhood Education Research Journal, 5(1), 77-88.
Greff, E. (2001). Résolution de problèmes en GS autour des pivotements à l’aide du robot du plancher. Grand N, 68, 7-16.
Harris, l. (1972). Discrimination of left and right, and development of the logic of relations. Merrill-Palmer Quarterly, 18, 307-320.
Highfield, K. (2010). Robotic toys as a catalyst for mathematical problem solving. Australian Primary Mathematics Classroom, 15(2), 22-27.
Highfield, K., & Goodwin, K. (2008). A review of recent research in early mathematics learning and technology. In M. Goos, R. Brown & K. Makar (Eds.), Mathematics Education Research Group of Australasia (pp. 259-264). Brisbane: Mathematics Education Research Group of Australasia.
Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with programmable toys. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepulveda (Eds.), Proceedings of the Joint Meeting of Pme 32 And Pme-Na Xxx, (Vol. 3, pp. 169-176). Mexico: Cinvestav-UMSNH.
Huttenlocher, J. E., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393-398.
João-Monteiro, M., Cristóvão-Morgado, R., Bulas-Cruz, M., & Morgado, L. (2003). A robot in kindergarten. In Eurologo'2003 Proceedings - Re-inventing technology on education. Coimbra, Portugal: Eurologo'2003. Retrieved from http://hal.archives-ouvertes.fr/hal-00190327/fr/.
Keller, J., & Shannahan, D. (1983). Robots in kindergarten. The Computing Teacher, 10(9), 66-67.
Kelly, E. Α., Lesh, A. R., & Baek, Y. J. (2008). Handbook of Design Research Methods in Education. New York, NY: Routledge.
Kilia, M. Zacharos, K., & Ravanis, K. (2015). Four to six years old children use photographs as sources of information about space. European Early Childhood Education Research Journal, 23(2), 164-182.
Komis, V., & Misirli, A. (2011). Robotique pédagogique et concepts préliminaires de la programmation à l’école maternelle : Une étude de cas basée sur le jouet programmable Bee-Bot. In Proceedings of the 4th conference of “Didactics of Informatics” – DIDAPRO (pp. 271-284). Athènes: New Technologies Editions.
Komis, V., & Misirli, A. (2012). L’usage des jouets programmables à l’école maternelle : concevoir et utiliser des scenarios éducatifs de robotique pédagogique. Revue Skhôlé, 17, 143-154.
Komis, V., & Misirli, A. (2015). Apprendre à programmer à l’école maternelle à l’ aide de jouets programmables. In G.-L. Baron, É. Bruillard & B. Drot-Delange (Éds.), Informatique en éducation : Perspectives curriculaires et didactiques (pp. 209-226). Clermont-Ferrand: Presses Universitaires Blaise-Pascal.
Komis, V., Romero, M., & Misirli, A. (2017). A scenario-based approach for designing educational robotics activities for co-creative problem solving. In Advances in Intelligent Systems and Computing (pp. 158-169). New York: Springer.
Leroux P., Nonnon P., & Ginestié J. (2005). Actes du 8ème colloque francophone de Robotique Pédagogique. Marseille: Revue Skhôlé.
Liben L. S., & Downs, R. M. (1993). Understanding person-scale-map relations: Cartographic and developmental perspectives. Developmental Psychology, 29(4), 739-752.
Lockavitch, J. (1975). Of course I‘m not stupid…I just don’t know my right from my left. Academic Therapy, 10(2), 159-165.
Misirli, A., & Komis, V. (2014). Robotics and programming concepts in Early Childhood Education: A conceptual framework for designing educational scenarios. In C. Karagiannidis, P. Politis & I. Karasavvidis (Eds.), Research on e-Learning and ICT in Education (pp. 99-118). New York: Springer.
Mulligan, J., & Highfield, K. (2008). Young children’s engagement with technological tools: The impact on mathematics learning. In Proceedings of International Congress in Mathematical Education 11 (pp. 1-8). Monterrey, Mexico: International Congress of Mathematics Education.
Pekarova, J. (2008). Using a programmable toy at preschool age: Why and how? In Workshop Proceedings of SIMPAR 2008 Intl. Conf. on Simulation, Modeling and Programming for Autonomous Robots (pp. 112-121). Venice, Italy: SIMPAR.
Piaget, J. (1952). Judgement and reasoning in the child. London: Routledge.
Piaget, J., & Inhelder, B. (1956). The child’s conception of space. London: Routledge and Kegan Paul.
Yelland, N. (2007). Shift to the future: Rethinking learning with new technologies in education. New York: Routledge.
Zacharos, K., Kilia, M., & Ravanis, K. (2014). Familiarizing pupils 4-6 years old with forms of spatial representation. The use of photography as an auxiliary tool. Journal of Social Science Research, 4(1), 454-463.
DOI: https://doi.org/10.26220/rev.3122
View Counter: Abstract | 1337 | times, and PDF | 752 | times
Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.
Pasithee | Library & Information Center | University of Patras