Trends, challenges, and opportunities of Multiple-Representation in Science learning: a systematic literature review

RAHMA DIANI, VIYANTI VIYANTI, DEWI LENGKANA, TRI JALMO, ALIYA DESTIANA, ANTOMI SAREGAR, FREDI GANDA PUTRA

Abstract

The multiple-representation approach, central to this systematic literature review (SLR), aims to enhance the effectiveness of science learning. Conducted based on the PRISMA 2020 framework, this review analyzed 56 articles published between 2018 and 2022 from the Scopus and Web of Science (WoS) databases. The study uncovers a significant increase in the use of multiple representations to boost student understanding and engagement in science. Notably, it identifies specific challenges, such as integrating technology and pedagogical alignment, and opportunities including innovative educational tools and curriculum development. These findings bridge a critical research gap, offering valuable insights and a comprehensive guide for educators, researchers, and practitioners to meet the dynamic needs of evolving science education.

Keywords

Learning effectiveness, multiple-representation, science learning, PRISMA 2020, systematic literature review

Full Text:

PDF

References

Ahmed, S. K., Jeffries, D., Chakraborty, A., Lietz, P., Kaushik, A., Rahayu, B., Armstrong, D., & Sundarsagar, K. (2021). PROTOCOL: Teacher professional development for disability inclusion in low‐ and middle‐income Asia‐Pacific countries: An evidence and gap map. Campbell Systematic Reviews, 17(4). https://doi.org/10.1002/cl2.1201.

Ainsworth, S. (1999). The functions of Multiple Representations. Computers and Education, 33(2-3), 131-152.

Alter, P., & Haydon, T. (2017). Characteristics of effective classroom rules: A review of the literature. Teacher Education and Special Education: The Journal of the Teacher Education Division of the Council for Exceptional Children, 40(2). https://doi.org/10.1177/0888406417700962.

Arifin, S., Setyosari, P., Sa’dijah, C., & Kuswandi, D. (2020). The effect of problem based learning by cognitive style on critical thinking skills and student retention. Journal of Technology and Science Education, 10(2), 271-281.

Bajracharya, R. R., Emigh, P. J., & Manogue, C. A. (2019). Students’ strategies for solving a multirepresentational partial derivative problem in thermodynamics. Physical Review Physics Education Research, 15(2), 020124. https://doi.org/10.1103/PhysRevPhysEducRes.15.020124.

Bakar, K. A., Mohamed, S., Yunus, F., & Karim, A. A. (2020). Use of multiple representations in understanding addition: The case of pre-school children. International Journal of Learning, Teaching and Educational Research, 19(2), 292-304.

Benslimane, D., Vangenot, C., Roussey, C., & Arara, A. (2003). Multirepresentation in ontologies. In L. Kalinichenko, R. Manthey, B. Thalheim & U. Wloka (Eds.), Advances in Databases and Information Systems. ADBIS 2003. Lecture Notes in Computer Science (Vol. 2798, pp. 4-15). Springer Verlag.

Bittencourt, V. A. S. V., Blasone, M., Siena, S. D., & Matrella, C. (2022). Complete complementarity relations for quantum correlations in neutrino oscillations. The European Physical Journal C, 82(566). https://doi.org/10.1140/epjc/s10052-022-10508-5.

Bologna, V., Longo, F., Peressi, M., & Sorzio, P. (2022). Monitoring PCK physics teachers’ strategies for Math and Physics languages integration: The teacher footprint. Journal of Physics: Conference Series, 2297(1). https://doi.org/10.1088/1742-6596/2297/1/012034.

Chang, X., Yuksel, K., & Skarbek, W. (2017). WebGL and web audio software lightweight components for multimedia education. In Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017 (Vol. 10445, p. 104452H). https://doi.org/10.1117/12.2281018.

Chen, G., Lü, Y., King, J. A., Cacucci, F., & Burgess, N. (2019). Differential influences of environment and self-motion on place and grid cell firing. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08550-1.

Chen, Z., & Gladding, G. (2014). How to make a good animation: A grounded cognition model of how visual representation design affects the construction of abstract physics knowledge. Physical Review Special Topics - Physics Education Research, 10(1). https://doi.org/10.1103/physrevstper.10.010111.

Chusni, M. M., Saputro, S., Surant, S., & Rahardjo, S. B. (2022). Enhancing critical thinking skills of junior High School students through discovery-based Multiple Representations Learning Model. International Journal of Instruction, 15(1), 927-945.

Danday, B. A., & Monterola, S. L. C. (2019). Effects of microteaching multiple-representation physics lesson study on pre-service teachers’ critical thinking. Journal of Baltic Science Education, 18(5), 692-707.

Davenport, J. L., Rafferty, A. N., & Yaron, D. (2018). Whether and how authentic contexts using a virtual Chemistry lab support learning. Journal of Chemical Education, 95(8), 1250-1259.

Dehghan, M. H., Molla-Abbasi, M., & Faili, H. (2019). Toward a Multi-Representation Persian Treebank. In 9th International Symposium on Telecommunication (pp. 581-586). IST 2018. https://api.semanticscholar.org/CorpusID:71149262.

Forlin, C., & Sin, K. F. (2017). In-service teacher training for inclusion. Oxford Research Encyclopedia of Education. https://doi.org/10.1093/acrefore/9780190264093.013.161.

Fratiwi, N. J., Utari, S., & Samsudin, A. (2019). Study of concept mastery of binocular K-11 students through the implementation of a multi-representative approach. International Journal of Scientific and Technology Research, 8(8), 1637-1642.

Frellesvig, H., Gasparotto, F., Laporta, S., Mandal, M. K., Mastrolia, P., Mattiazzi, L., & Mizera, S. (2019). Decomposition of Feynman integrals on the maximal cut by intersection numbers. Journal of High Energy Physics, 2019(5). https://doi.org/10.1007/jhep05(2019)153.

Gao, L., Xu, K., Wang, H., & Peng, Y. (2022). Multi-representation knowledge distillation for audio classification. Multimedia Tools and Applications, 81(4), 5089-5112.

Gautam, A., Bortz, W., & Tatar, D. (2020). Abstraction through multiple representations in an integrated computational thinking environment. In Proceedings of thw 51st ACM SIGCSE Technical Symposium on Computer Science Education (pp. 393-399). SIGCSE 2020. https://doi.org/10.1145/3328778.3366892.

Giovannini, M. (2019). Stimulated emission of relic gravitons and their super-Poissonian statistics. Modern Physics Letters A, 34(23). https://doi.org/10.1142/s0217732319501852.

González-Santander, J. L. (2018). Closed-form expressions for derivatives of Bessel functions with respect to the order. Journal of Mathematical Analysis and Applications, 466(1), 1060-1081.

Guntara, Y., & Utami, I. S. (2021). Measuring the classification of digital natives use Digital Natives Assessment Scale: The implementation on pre-service Physics teachers in Banten-Indonesia and its implications. Jurnal Penelitian & Amp; Pengembangan Pendidikan Fisika, 7(2), 161-168.

Hahnel, C., Schoor, C., Kroehne, U., Goldhammer, F., Mahlow, N., & Artelt, C. (2019). The role of cognitive load in university students’ comprehension of multiple documents. Zeitschrift Für Pädagogische Psychologie, 33(2). https://doi.org/10.1024/1010-0652/a000238.

Hamzeh, W., Mershad, K., & Vetohin, S. (2019). Integrating technology into higher education: A case study in Lebanon. Journal of Technology and Science Education, 9(3), 442-457.

Heitink, M. C., Voogt, J., Fisser, P., Verplanken, L., & Braak, J. van. (2017). Eliciting teachers’ technological pedagogical knowledge. Australasian Journal of Educational Technology, 33(3), 96-109.

Hendriana, H., & Fadhillah, F. M. (2019). The students’ mathematical creative thinking ability of junior High School through problem-solving approach. Infinity Journal, 8(1), 11-20.

Jeunehomme, O., Heinen, R., Stawarczyk, D., Axmacher, N., & D’Argembeau, A. (2022). Representational dynamics of memories for real-life events. iScience, 25(11). https://doi.org/10.1016/j.isci.2022.105391.

Kadir, M. S., Yeung, A. S., Caleon, I. S., Diallo, T. M. O., Forbes, A., & Koh, W. X. (2023). The effects of load reduction instruction on educational outcomes: An intervention study on hands-on inquiry-based learning in science. Applied Cognitive Psychology, 37(4), 814-829.

Kara, F., & İncikabi, L. (2018). Sixth grade students’ preferences on multiple representations used in fraction operations and their performance in their preferences. Elementary Education Online, 17(4), 2136-2150.

Khemmani, V., & Isariyapalakul, S. (2018). The multiresolving sets of graphs with prescribed multisimilar equivalence classes. International Journal of Mathematics and Mathematical Sciences, 2018. https://doi.org/10.1155/2018/8978193.

Kim, H., & Lee, S. (2021). A video captioning method based on multi-representation switching for sustainable computing. Sustainability, 13(4), 2250. https://doi.org/10.3390/su13042250.

Klein, P., Viiri, J., & Kuhn, J. (2019). Visual cues improve students’ understanding of divergence and curl: Evidence from eye movements during reading and problem solving. Physical Review Physics Education Research, 15(1). https://doi.org/10.1103/physrevphyseducres.15.010126.

Lamanepa, G. H., Maing, C. M. M., Mukin, M. U. J., & Naen, A. B. (2022). The role of visual representation for high School Physics in teaching of Classical Mechanics. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 8(1), 105-114.

Lisman, J., Buzsáki, G., Eichenbaum, H., Nadel, L., Ranganath, C., & Redish, A. D. (2017). Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience, 20(11). https://doi.org/10.1038/nn.4661.

Liu, X.-G., & Ding, G.-J. (2019). Neutrino masses and mixing from double covering of finite modular groups. Journal of High Energy Physics, 2019(8). https://doi.org/10.1007/jhep08(2019)134.

Mahardika, I. K., Delftana, R. E., Rasagama, I. G., Suprianto, Rasyid, A. N., & Sugiartana, I. W. (2020). Practicality of physics module based on contextual learning accompanied by multiple representations in physics learning on senior high school. Journal of Physics: Conference Series, 1521(2). https://doi.org/10.1088/1742-6596/1521/2/022064.

Malone, S., Altmeyer, K., Vogel, M., & Brünken, R. (2020). Homogeneous and heterogeneous multiple representations in equation-solving problems: An eye-tracking study. Journal of Computer Assisted Learning, 36(6), 781-798.

Mardiansyah, Y., Hernando, L., Rahman, T., F, I., Raynold, & Budiman, M. (2022). Redesign accelerated linear motion experiment on inclined plane using sensors to improve student’s conceptual understanding. Journal of Physics: Conference Series, 2309(1). https://doi.org/10.1088/1742-6596/2309/1/012077.

Masoudnia, S., Mersa, O., Araabi, B. N., Vahabie, A.-H., Sadeghi, M. A., & Ahmadabadi, M. N. (2019). Multi-representational learning for Offline Signature Verification using Multi-Loss Snapshot Ensemble of CNNs. Expert Systems with Applications, 133, 317-330.

Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., & Gajdzik, E. (2020). Multiple Representations in Computational Thinking tasks: A clinical study of Second-Grade students. Journal of Science Education and Technology, 29(1), 19-34.

Mu, X., & Xu, A. (2019). A character-level BiLSTM-CRF Model with Multi-Representations for Chinese event detection. IEEE Access, 7, 146524-146532.

Munfaridah, N., Avraamidou, L., & Goedhart, M. (2021). The use of Multiple Representations in undergraduate Physics Education: What do we know and where do we go from here? Eurasia Journal of Mathematics, Science and Technology Education, 17(1), em1934. https://doi.org/10.29333/ejmste/9577.

Munfaridah, N., Avraamidou, L., & Goedhart, M. (2022). Preservice Physics teachers’ development of Physics identities: The role of Multiple Representations. Research in Science Education, 52(6), 1699-1715.

Mutia, N. B., & Prasetyo, Z. K. (2018). The effectiveness of students’ worksheet based on Multiple Representations to increase creative thinking skills. Journal of Education and Learning, 12(4), 631-637.

Naismith, L., Haji, F., Sibbald, M., Cheung, J. J. H., Tavares, W., & Cavalcanti, R. B. (2015). Practising what we preach: Using cognitive load theory for workshop design and evaluation. Perspectives on Medical Education, 4(6), 344-348.

O’Reilly, C., Devitt, A., & Hayes, N. (2022). Critical thinking in the preschool classroom. A systematic literature review. Thinking Skills and Creativity, 46, 101110. https://doi.org/10.1016/j.tsc.2022.101110.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71.

Penuel, W. R., Fishman, B. J., Yamaguchi, R., & Gallagher, L. P. (2007). What makes professional development effective? Strategies that foster curriculum implementation. American Educational Research Journal, 44(4). https://doi.org/10.3102/0002831207308221.

Permatasari, M. B., Rahayu, S., & Dasna, I. W. (2022). Chemistry learning using multiple representations: A systematic literature review. Journal of Science Learning, 5(2), 334-341.

Ranellucci, J., Rosenberg, J. M., & Poitras, E. (2020). Exploring pre-service teachers’ use of Technology: The Technology Acceptance Model and Expectancy-Value Theory. Scite.Ai. https://doi.org/10.31219/osf.io/8q2vk.

Rasmawan, R. (2020). Development of multi-representation based electronic book on inter molecular forces (IMFs) concept for prospective chemistry teachers. International Journal of Instruction, 13(4), 747-762.

Rau, M. A. (2016). Conditions for the effectiveness of Multiple Visual Representations in enhancing STEM learning. Educational Psychology Review, 29(4), 717-761.

Riska, S. A., & Guspatni, G. (2022). The effectiveness of Powerpoint-iSpring integrated multiple chemical representation learning media on acid-base materials to improve students learning outcomes for Senior High School. Jurnal Pijar Mipa, 17(5), 577-580.

Saputra, A. J., Jumadi, J., Paramitha, D. W., & Sarah, S. (2019). Problem-solving approach in Multiple Representations of qualitative and quantitative problems in Kinematics Motion. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(1), 89-98.

Shaukat, S., Vishnumolakala, V. R., & Bustami, G. A. (2018). The impact of teachers’ characteristics on their self‐efficacy and job satisfaction: A perspective from teachers engaging students with disabilities. Journal of Research in Special Educational Needs, 19(1), 68-76.

Supasorn, S. (2015). Grade 12 students’ conceptual understanding and mental models of galvanic cells before and after learning by using small-scale experiments in conjunction with a model kit. Chemistry Education Research and Practice, 16(2), 393-407.

Supasorn, S., Wuttisela, K., Moonsarn, A., Khajornklin, P., Jarujamrus, P., & Chairam, S. (2022). Grade-11 students’ conceptual understanding of chemical reaction rate from learning by using the small-scale experiments. Jurnal Pendidikan IPA Indonesia, 11(3), 433-448.

Sutriani, & Mansyur, J. (2021). The analysis of students’ ability in solving physics problems using multiple representations. 2020 National Physical Education Seminar, SNPF 2020, 1760(1). https://doi.org/10.1088/1742-6596/1760/1/012035.

Taqwa, M. R. A., Zainuddin, A., & Riantoni, C. (2020). Multi representation approach to increase the students’ conceptual understanding of work and energy. In 6th International Conference on Mathematics, Science, and Education, ICMSE 2019, 1567(3). https://doi.org/10.1088/1742-6596/1567/3/032090.

Tima, M. T., & Sutrisno, H. (2018). Effect of using problem-solving model based on multiple representations on the students’ cognitive achievement: Representations of chemical equilibrium. Asia-Pacific Forum on Science Learning and Teaching, 19(1), 10. https://staffnew.uny.ac.id/upload/132011628/penelitian/C6-tima%20Asia-Pacific.pdf.

Ulva, Y. I., Mahardika, I. K., & Nuriman. (2021). Graphic representation ability in learning chemistry through multipresentation-based chemistry modules. Journal of Physics: Conference Series, 1832(1). https://doi.org/10.1088/1742-6596/1832/1/012044.

Wang, L., Xue, X., Wang, Z., & Zhang, L. (2018). A Unified Assessment Approach for Urban Infrastructure Sustainability and Resilience. Advances in Civil Engineering, 2018, 2073968. https://doi.org/10.1155/2018/2073968.

Widarti, H. R., Marfuah, S., & Parlan. (2019a). The effects of using Multiple Representations on prospective teachers’ conceptual understanding of intermolecular forces. Journal of Physics: Conference Series, 1227(1), 012044. https://doi.org/10.1088/1742-6596/1227/1/012006.

Widarti, H. R., Marfuah, S., & Parlan, P. (2019b). Improving Chemistry prospective teacher’s conceptual understanding of resonance using Multiple Representation. In Proceedings of the 3rd Asian Education Symposium (AES 2018). https://doi.org/10.2991/aes-18.2019.49.

Widarti, H. R., Permanasari, A., Mulyani, S., Rokhim, D. A., & Habiddin. (2021). Multiple Representation-Based Learning through Cognitive Dissonance Strategy to Reduce Student’s Misconceptions in Volumetric Analysis. TEM Journal, 10(3), 1263-1273.

Wiyarsi, A., Sutrisno, H., & Rohaeti, E. (2018). The effect of multiple representation approach on students’ creative thinking skills: A case of ‘Rate of Reaction’ topic. Journal of Physics: Conference Series, 1097. https://doi.org/10.1088/1742-6596/1097/1/012054.

Wu, C. J., & Liu, C. Y. (2021). Eye-movement study of high- and low-prior-knowledge students’ scientific argumentations with multiple representations. Physical Review Physics Education Research, 17(1). https://doi.org/10.1103/PhysRevPhysEducRes.17.010125.

Yaghoobzadeh, Y., & Schütze, H. (2018). Multi-multi-view learning: Multilingual and multi-representation entity typing. In E. Riloff, D. Chiang, J. Hockenmaier, & J. Tsujii (Eds.), Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 (pp. 3060-3066). Association for Computational Linguistics.

Yuniati, S., Nusantara, T., Subanji, & Made Sulandra, I. (2019). The use of multiple representation in functional thinking. International Journal of Recent Technology and Engineering, 8(1C2), 672-678.

Zakirman, Z., Fendriani, Y., & Rahayu, C. (2022). The Effectiveness of E-Simulation with Asynchronous Learning Concept to Improving Students Uderstanding in Physics Education Department FKIP Indonesia Open University. Journal of Physics: Conference Series, 2309(1). https://doi.org/10.1088/1742-6596/2309/1/012058.


DOI: https://doi.org/10.26220/rev.4657

View Counter: Abstract | 566 | times, and PDF | 276 | times



Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Pasithee | Library & Information Center | University of Patras