The Nature of Science in the French high school science syllabuses, role of the History of Science and innovative pedagogical proposals
Abstract
We present here the main results of two studies we conducted in our laboratory in the NoS research field. One study deals with the representation of science conveyed by the French science high school syllabuses of two school subjects (biology-geology, physics-chemistry) and of two majors (scientific and economic-literary). We demonstrate how we designed an analysis tool, a matrix, adopting a broad definition of NoS and choosing an approach which privileges the individual and his practices but takes also into account the social and temporal dimensions of the scientific enterprise. We show how we used this NoS multidimensional matrix in order to analyze the programs and the representations of sciences they convey. We discuss the place the syllabuses give to the NoS teaching and the role accorded to the history of science. The second study concerns the design of innovative pedagogical units based on the history of physics in order to convey a greater authenticity of NoS in teaching. We show how our NoS multidimensional matrix can help to elicit and characterize epistemological learning goals. We outline how classroom activities involving collective inquiry based on the implementation of documents can be generated.
Keywords
Full Text:
PDFReferences
Abd-El-Khalick, F. (2012a). Examining the sources for our understandings about Science: Enduring conflations and critical issues in research of nature of science in science education. International Journal of Science Education, 34(3), 353-374.
Abd-El-Khalick, F. (2012b). Teaching with and about nature of science, and science teacher domains. Science & Education, 22(9), 2087-2107.
Abd-El-Khalick, F., Waters, M., & Le, A. (2008). Representations of nature of science in high school chemistry textbooks over the past four decades. Journal of Research in Science Teaching, 45(7), 835-855.
Adúriz-Bravo, A. (2004). Methodology and politics: a proposal to teach the structural ideas of Philosophy of Science through the pendulum. Science & Education, 13, 717-731.
Allchin, D. (2011). Evaluating knowledge of the Nature of (whole) science. Science Education, 95, 918-942.
Allchin, D., Andersen, H.-M., & Nielsen, K. (2014). Complementary approaches to teaching nature of science: integrating student inquiry, historical cases, and contemporary cases in classroom practice. Science Education, 98(3), 461-486.
Beaufils, D., & Maurines, L. (2008). « La loi des sinus » : quelques considérations épistémologiques et didactiques. BUP, 909, 1345-1351.
Beaufils, D., & Maurines, L. (2013). L’image de la physique au travers de l’enseignement de la spectroscopie : propositions didactiques. BUP, 107(956), 657-679.
ByBee, R. W., & Ben-Zvi, N. (2003). Science curriculum: Transforming goals to practice. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 487-498). Dordrecht: Kluwer Academic Publishers.
Chalmers, A. F. (1991). La fabrication de la science. Paris: La Découverte.
Clough, M. P. (2010). The story behind the science: Bringing science and scientists to life in post-secondary science education. Science & Education, 20(7),701-717.
Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Bristol: Open University Press.
Dupin, J. J. (2006). L’enseignement de l’histoire des sciences et des techniques devrait-il avoir sa place à l’école ? Tréma, 26, 29-33.
Duschl, R. A. (2008). Science education in 3 part harmony: Balancing conceptual, epistemic and social goals. Review of Research in Education, 32, 268 – 291.
Duschl, R. A., & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education, 22(9), 2109-2139.
Erduran, S., & Dagher, Z.-R. (2014). Reconceptualizing the Nature of Science for Science Education. Scientific knowledge, practices and other family categories. The Netherlands: Springer.
Guedj, M., Laubé, S., & Savaton, P. (2007). Démarche d’investigation et EHST. Un constat et des pistes de réflexion. In Actes des Troisièmes Journées ReForEHST, (pp. 6-10, second cahier), Caen.
Hipkins R., Barker, M., & Bolstad R. (2005). Teaching the “nature of science”: modest adaptation or radical reconception? International Journal of Science Education, 27( 2), 243-254.
Höttecke, D., Henke, A., & Riess, F. (2010). Implementing history and philosophy in science teaching: strategies, methods, results and experiences from the European HIPST project, Science & Education. 21, 1233-1261.
Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7-8), 591-607.
Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. Matthews (Ed.) International Handbook of research in history, philosophy and science teaching (pp. 999-1021). Dordrecht: Springer.
Johsua, S. (1989). Le rapport à l’expérimental dans la physique de l’enseignement secondaire. Aster, 8, 29–54.
Lederman, N. G. (2007). Nature of Science: past, present and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). London: Lawrence Erlbaum associates.
Martinand, J.-L. (1986). Connaître et transformer la matière. Berne : Peter Lang.
Martinand, J.-L. (1989). Des objectifs-capacités aux objectifs-obstacles: Deux études de cas. In N. Bednaz & C. Garnier (Eds.), Construction des savoirs. Obstacles et conflits (pp. 217–227). Ottawa: CIRADE & Agence d’AEC inc.
Mathy, P. (1997). Donner du sens aux cours de sciences. Paris: De Foeck.
Matthews, M. R. (2012). Changing the focus: from Nature of Science (NOS) to features to Science (FOS). In M. S. Khine (Ed.), Advances in Nature of Science Research (pp. 3-26). Dordrecht: Springer.
Maurines, L. (2013). Les programmes de sciences du lycée en France et la nature des sciences : rapport à la vérité, aux croyances et à la culture. In Actes du colloque international de l’AREF. Retrieved from http://www.aref2013.univ-montp2.fr/cod6/?q=content/2851-les-programmes-de-sciences-de-seconde-en-france-et-la-nature-des-sciences-rapport-%C3%A0-la.
Maurines, L., & Mayrargue, A. (2005). How the investigations of the students’ reasoning on waves and the history of physics can help us to develop research-based innovative units for secondary students on the velocity of light? In Proceedings of the eight IHPST conference, Leeds. Retrieved from https://halshs.archives-ouvertes.fr/REHSEIS/hal-00385723v1.
Maurines, L., & Mayrargue, A. (2007). Utiliser l’histoire de l’optique dans l’enseignement: pourquoi? Comment? In Actes des Journées de l’Union des Professeurs de Physique et Chimie « Paris de sciences ». Retrieved from www.udppc.asso.fr/paris2007/docactes/2007/185_21032008123615.doc.
Maurines, L., & Beaufils, D. (2011). Un enjeu de l’histoire des sciences dans l’enseignement : l’image de la nature des sciences et de l’activité scientifique. Revue de Didactique des Sciences et des Technologies, 3, 271-304.
Maurines, L., & Beaufils, D (2012a). An aim for science education in France: the image of the nature of science. How to introduce the history of science in science classes in order to reach it? In A. Roca-Rosell (Ed.), Proceedings of the 4th International Conference of the European Society of History of Science (pp. 148-154). Barcelona: SCHCT-IEC.
Maurines, L. & Beaufils, D. (2012b). Teaching the Nature of Science in Physics courses: the contribution of classroom historical inquiries. Science & Education, 22(6), 1443-1465.
Maurines, L., Fuchs-Gallezot, M., Beaufils, D., & Ramage, M.-J. (2012). A proposal to analyze the representation of the Nature of Science conveyed by science teaching and to elaborate new pedagogical proposals. In G. Katsiampoura (Ed.), Proceedings of the 5th International Conference of the European Society of History of Science (pp. 222-233), Athens: National Hellenic Research Foundation / Institute of Historical Research.
Maurines, L., Fuchs-Gallezot, M., Ramage, D., & Beaufils, D. (2013). La nature des sciences dans les programmes de seconde de physique-chimie et de sciences de la vie et de la Terre. Revue en Didactique des Sciences et des Technologies, 7, 19-52.
Maurines, L., Fuchs-Gallezot, M., & Ramage M.-J. (2014). Conduire des études sur la nature des sciences et de l’activité scientifique dans l’enseignement des sciences : une discussion sur les références fondée sur une analyse des programmes de sciences du lycée et sur une exploration des représentations des étudiants en France. Colloque international de l’AAE « Les sciences sociales européennes face à la globalisation de l’éducation et de la formation : vers un nouveau cadre réflexif et critique ? » Amiens, Novembre 2014.
Mc Comas, W. (1998). The nature of science in science education. Rationales and strategies. Dordrecht: Kluwer Academic Publishers.
Mc Comas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. Mc Comas (Ed.), The nature of science in science education. Rationales and strategies (pp. 53-70). Dordrecht: Kluwer Academic Publishers.
Pélissier, L., Venturini, P., & Calmettes, B. (2007). L’épistémologie souhaitable et l’épistémologie implicite dans l’enseignement de la physique. De l’étude sur l’enseignement de la seconde à la démarche d’investigation au collège. In Actes des Troisièmes Journées ReForEHST, (pp. 8-13, premier cahier), Caen.
Pélissier, L. (2011). Études des pratiques d’enseignement des savoirs de l’épistémologie de la physique en classe de lycée général. Doctoral Thesis. France, Université de Toulouse.
Pestre, D. (2006). Introduction aux Sciences Studies. Paris: La Découverte.
Piliouras, P., Siakas, S., & Seroglou, F. (2011). Pupils produce their own narratives inspired by the history of science: Animation movies concerning the geocentric–heliocentric debate. Science & Education, 20(7-8), 761-795.
Robardet, G. (1995). Didactique des sciences physiques et formation des maîtres : contribution à l’analyse d’un objet naissant. Thèse, France, LIDSE, Université Grenoble 1-Joseph Fourier.
Roletto, E. (1998). La science et les connaissances scientifiques : point de vue de futurs enseignants, Aster, 26, 11-30.
Sandoval, W. (2014). Science Education’s need for a theory of epistemological development. Science Education, 98(3), 371-548.
Slaïmia, M., & Maurines, L. (2012). L’image des sciences au travers de l’histoire de la dioptrique dans l’enseignement secondaire tunisien : conceptions d’élèves de seconde après une séance innovante. In Actes des septièmes rencontres de l’ARDiST (pp. 413–424). Bordeau: ARDiST.
Slaïmia, M. (2014). L’image de l’activité scientifique au travers de l’histoire de la dioptrique : élaboration et expérimentation d’une séquence d’enseignement pour la classe de seconde ; rapport des enseignants tunisiens à l’enseignement des sciences et à l’innovation. Doctoral thesis, France, Université Paris-Sud.
DOI: https://doi.org/10.26220/rev.2239
View Counter: Abstract | 421 | times, and PDF | 188 | times
Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.
Pasithee | Library & Information Center | University of Patras