Upper secondary school students’ understanding of adiabatic compression
Abstract
The present study refers to second year (16-17 years old) upper secondary school students’ conceptions on elementary thermodynamics and especially the First Law of Thermodynamics (FLT). This paper focuses on students’ explanations of a real situation representing an adiabatic compression and their forms of reasoning in providing explanations. We used descriptive statistics and hierarchical cluster analysis in order to process students’ answers. The main results were that (a) the vast majority of the responses consisted of alternative frameworks, namely FLT is highly disregarded among the students, (b) the students provided confused explanations that entangle diverse physics models and/or referred to the phenomenology of the situation and (c) linear causal reasoning was the prevailing way for providing explanations, although it was inadequate for this physics level.
Keywords
Full Text:
PDFReferences
Arnold, M., & Millar, R. (1994). Children’s and lay adults’ views about thermal equilibrium. International Journal of Science Education, 16(4), 405-419.
Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Vrin.
Baehr, H.-D. (1973). Thermodynamik: eine Einführung in die Grundlagen und ihre technischen Anwendungen. Berlin: Springer.
Barbera, J., & Wieman, C. E. (2009). Effect of a dynamic learning tutorial on undergraduate students’ understanding of Heat and the First Law of Thermodynamics. Chem. Educator, 4171(14), 45-48.
Basics, S., & Sambamoorthi, N. (1978). Hierarchical Cluster Analysis. Most, 07726(5), 1-10.
Çengel, Y. A., & Boles, M. A. (2011). Thermodynamics: an engineering approach. New York: McGraw Hill.
Choi, S. S., Cha, S. H., & Tappert, C. C. (2010). A survey of binary similarity and distance measures. Journal of Systemics, Cybernetics and Informatics, 8(1), 43-48.
Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11(5), 481-490.
Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2), 221-230.
Halbwachs, F. (1971). Causalité linéaire et causalité circulaire en physique. In M. Bunge, F. Halbwachs, T. Kuhn, J. Piaget & L. Rosenfeld (Eds), Les théories de la causalité (pp. 19-38). Paris: Presses Universitaires de France.
Hodson, D. (1986). Rethinking the role and status of observation in Science Education. Journal of Curriculum Studies, 18(4), 381-396.
Johnstone, A. H., MacDonald, J. J., & Webb, G. (1977). Misconceptions in school thermodynamics. Physics Education, 12, 248-251.
Kautz, C. H., Heron, P. R. L., Loverude, M. E., & McDermott, L. C. (2005). Student understanding of the ideal gas law, Part I: a macroscopic perspective. American Journal of Physics, 73(11), 1055-1063.
Kautz, C. H., Heron, P. R. L., Shaffer, P. S., & McDermott, L. C. (2005). Student understanding of the ideal gas law, Part II: a microscopic perspective. American Journal of Physics, 73(11), 1064-1071.
Kesidou, S., & Duit, R. (1993). Students’ conceptions of the second law of thermodynamics – an interpretive study. Journal of Research in Science Teaching, 30(1), 85-106.
Koliopoulos, D. (2008). The views of Francis Halbwachs on the nature of the “explanation” in physics and how they affect research in Didactics of natural sciences. In V. Koulaidis, A. Apostolou & K. Kambourakis (Eds), Nature of Science. Teaching approaches (pp. 219-232). Athens: Child Services [In Greek].
Kuhn, T. S. (1971). Les notions de causalité dans le développement de la physique. In M. Bunge, F. Halbwachs, J. Piaget & L. Rosenfeld (Eds), Les théories de ta causalité. Paris: Presses Universitaires de France.
Leinonen, R., Asikainen, M. A., & Hirvonen, P. E. (2012). University students explaining adiabatic compression of an ideal gas – A new phenomenon in introductory Thermal Physics. Research in Science Education, 42(6), 1165-1182.
Leinonen, R., Raesaenen, E., Asikainen, M. & Hirvonen, P. E. (2009). Students’ pre-knowledge as a guideline in the teaching of introductory thermal physics at university. European Journal of Physics, 30(3), 593-604.
Loverude, M. E., Kautz, C. H., & Heron, P. R. L. (2002). Student understanding of the first law of thermodynamics: relating work to the adiabatic compression of an ideal gas. American Journal of Physics, 70(2), 137-148.
Meli, K. (2015). Developing an educational computer simulation for the thermodynamic processes of ideal gases: epistemological and didactical approaches. MSc thesis, University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/9016 [In Greek].
Meltzer, D. E. (2004). Investigation of students’ reasoning regarding heat, work, and the first law of thermodynamics in an introductory calculus-based general physics course. American Journal of Physics, 72(11), 1432-1446.
Rozier, S., & Viennot, L. (1991). Students’ reasonings in thermodynamics. International Journal of Science Education, 13(2), 159-170.
Tiberghien, A. (1994). Modeling as basis for analyzing teaching-learning situations. Learning and Instruction, 4, 71-87.
Tiberghien, A., Psillos, D., & Koumaras, P. (1995). Physics instruction from epistemological and didactical bases. Instructional Science, 22(1990), 423-444.
van Roon, P. H., van Sprang, H. F., & Verdonk, A. H. (1994). “Work” and “Heat”: on a road towards thermodynamics. International Journal of Science Education, 16(2), 131-144.
Walton, D. N. (1990). What is reasoning? What is an argument? The Journal of Philosophy, 87(8), 399-419.
DOI: https://doi.org/10.26220/rev.2777
View Counter: Abstract | 581 | times, and PDF | 185 | times
Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.
Pasithee | Library & Information Center | University of Patras