Le jeu du robot : analyse d’une activité d’informatique débranchée sous la perspective de la cognition incarnée

MARGARIDA ROMERO, MARIE DUFLOT, THIERRY VIÉVILLE

Abstract

Unplugged computing activities became popular at the same time as the introduction of computer science learning at school. In this article we analyze the educational opportunities yielded by computer unplugged activities from the perspective of educational sciences. Theories related to embodied cognition are used here as a framework to analyse unplugged activities such as the robot game, where a student acts as a programmer and the other as a programmable object, such as a robot. This robot game allows us to discuss the potential of unplugged computing activities in connection with the learning of orientation in space, including the transformation from the plane to the three-dimensional space, taking the embodied cognition potential into account.

 

Keywords

Educative robotics, primary school, learning, micro-genetics approach, activity analysis

Full Text:

PDF

References

Alayrangues, S., Peltier, S., & Signac, L. (2017). Informatique débranchée: Construire sa pensée informatique sans ordinateur. In Colloque Mathématiques en Cycle 3 IREM de Poitiers. Retrieved from https://hal.archives-ouvertes.fr/hal-01868132.

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241.

Bara, F., & Tricot, A. (2017). Le rôle du corps dans les apprentissages symboliques: Apports des théories de la cognition incarnée et de la charge cognitive. Recherches sur la Philosophie et le Langage. Retrieved from https://hal.archives-ouvertes.fr/hal-01628840.

Bazzini, L. (2001). From grounding metaphors to technological devices: A call for legitimacy in school mathematics. Educational Studies in Mathematics, 47(3), 259-271.

Bell, T., Witten, I. H., & Fellows, M. (1998). Computer Science unplugged: Off-line activities and games for all ages. Retrieved from https://classic.csunplugged.org/wp-content/uploads/2015/01/unplugged-book-v1.pdf.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer Science unplugged: School students doing real computing without computers. The New Zealand Journal of Applied Computing and Information Technology, 13(1), 20-29.

Bender, A., & Beller, S. (2012). Nature and culture of finger counting: Diversity and representational effects of an embodied cognitive tool. Cognition, 124(2), 156-182.

Berthoz, A., & Viaud-Delmon, I. (1999). Multisensory integration in spatial orientation. Current Opinion in Neurobiology, 9(6), 708-712.

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. In Proceedings of the 12th Workshop on Primary and Secondary Computing Education (pp. 65-72). NY, USA: ACM.

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10(2), 151-170.

Corder, K., Atkin, A. J., Bamber, D. J., Brage, S., Dunn, V. J., Ekelund, U., … Goodyer, I. M. (2015). Revising on the run or studying on the sofa: Prospective associations between physical activity, sedentary behaviour, and exam results in British adolescents. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 106.

Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing computational thinking in the classroom: a framework. Retrieved from https://eprints.soton.ac.uk/369594/.

Drot-Delange, B. (2014). Littératie informatique: quels ancrages théoriques pour quels apprentissages? Spirale - Revue de Recherches en Éducation, 53(1), 121-132.

Duflot, M. (2016). Jouer à «robot-idiot» pour s’initier aux algorithmes. Pixees. Retrieved from https://pixees.fr/dis-maman-ou-papa-cest-quoi-un-algorithme-dans-ce-monde-numerique-%E2%80%A8/.

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, 37-65.

Gallagher, S. (2006). How the body shapes the mind. New York: Clarendon Press.

Greff, É. (1998). Le «jeu de l’enfant-robot»: Une démarche et une réflexion en vue du développement de la pensée algorithmique chez les très jeunes enfants. Sciences et Techniques Éducatives, 5(1), 47-61.

Highfield, K., Mulligan, J., & Hedberg, J. (2008). Early mathematics learning through exploration with programmable toys. In Proceedings of the Joint Meeting of PME (Vol. 32, pp. 169-176). Citeseer.

Inagaki, H., Meguro, K., Shimada, M., Ishizaki, J., Okuzumi, H., & Yamadori, A. (2002). Discrepancy between mental rotation and perspective-taking abilities in normal aging assessed by Piaget’s three-mountain task. Journal of Clinical and Experimental Neuropsychology, 24(1), 18-25.

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379-424.

Karsenti, T. (2018). 17 pistes pédagogiques pour vaincre la passivité numérique. CRIFPE. Retrieved from http://www.karsenti.ca/17passivite.pdf.

Kiefer, M., Schuler, S., Mayer, C., Trumpp, N. M., Hille, K., & Sachse, S. (2015). Handwriting or typewriting? The influence of pen-or keyboard-based writing training on reading and writing performance in preschool children. Advances in Cognitive Psychology, 11(4), 136.

Lovett, R. E. S., Kitterick, P. T., Huang, S., & Summerfield, A. Q. (2012). The developmental trajectory of spatial listening skills in normal-hearing children. Journal of Speech, Language, and Hearing Research, 55(3), 865-878.

Misirli, A., & Komis, V. (2014). Robotics and programming concepts in Early Childhood Education: A conceptual framework for designing educational scenarios. In C. Karagiannidis, P. Politis & I. Karasavvidis (Eds.), Research on e-Learning and ICT in Education (pp. 99-118). New York: Springer.

Misirli, A., & Komis, V. (2016). Construire les notions de l’orientation et de la direction à l’aide des jouets programmables: Une étude de cas dans des écoles maternelles en Grèce. In F. Villemonteix, G.-L. Baron & J. Béziat (Éds.), L’École primaire et les technologies informatisées: Des enseignants face aux TICE (pp. 17-28). France: Presses Universitaires du Septentrion.

Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., & Nuerk, H.-C. (2012). Learning and development of embodied numerosity. Cognitive Processing, 13(1), 271-274.

Piaget, J., & Inhelder, B. (1948). La représentation de l’espace chez l’enfant. (Vol. 4). Montréal: Presses Universitaires de France.

Riedo, F., Chevalier, M., Magnenat, S., & Mondada, F. (2013). Thymio II, a robot that grows wiser with children. In 2013 IEEE Workshop on Advanced Robotics and its Social Impacts (pp. 187-193). IEEE.

Rigal, R. (1996). Right-left orientation, mental rotation, and perspective-taking: When can children imagine what people see from their own viewpoint? Perceptual and Motor Skills, 83(3), 831-842.

Romero, M., & Vallerand, V. (2016). Guide d’activités technocréatives pour les enfants du 21e siècle (Vol. 1). Québec, QC: Livres en ligne du CRIRES. Retrieved from http://lel.crires.ulaval.ca/public/guidev1._guide_dactivites_technocreatives-romero-vallerand-2016.pdf

Romero, M., Dupont, V., & Pazgon, E. (2016). À gauche ou à droite du robot? Test de perspective décentrée gauche-droite par le biais d’une activité sur papier et d’une activité de robotique pédagogique. In Actes Du Colloque CIRTA 2016 «Dépassons nos frontières» (pp. 52-53). Québec: CIRTA.

Romero, M., Lille, B., & Patino, A. (Éds.) (2017). Usages créatifs du numérique pour l’apprentissage au XXIe siècle (Vol. 1). Québec: Presses de l’Université du Québec.

Saunders, T. J., & Vallance, J. K. (2017). Screen time and health indicators among children and youth: current evidence, limitations and future directions. Applied Health Economics and Health Policy, 15(3), 323-331.

Tomporowski, P. D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review, 20(2), 111-131.

Topping, K. J. (2005). Trends in peer learning. Educational Psychology, 25(6), 631-645.

Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus, M. (2017). Training computational thinking: Game-based unplugged and plugged-in activities in primary school. In European Conference on Games Based Learning (pp. 687-695). Academic Conferences International Limited.

Van Dijk, M. L., De Groot, R. H., Savelberg, H. H., Van Acker, F., & Kirschner, P. A. (2014). The association between objectively measured physical activity and academic achievement in Dutch adolescents: findings from the GOALS study. Journal of Sport and Exercise Psychology, 36(5), 460-473.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.

Wing, J. M. (2011). Computational thinking. In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (p. 33). Pittsburgh, USA: IEEE.


DOI: https://doi.org/10.26220/rev.3089

View Counter: Abstract | 478 | times, and PDF | 406 | times



Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Pasithee | Library & Information Center | University of Patras