Le changement des conceptions des étudiants de sciences du collégial à l’égard de la structure de l’atome en lien avec les pratiques enseignantes : une analyse qualitative

CHRISTINE MARQUIS, BRUNO POELLHUBER

Abstract

This paper aims to describe and explain the impact of certain teaching practices on collegen students’ conception changes. Teachers' practices during a lesson on atomic models were studied, as well as students' conceptions, based on diagrams they drew and commented, before and after the lesson. Aware of the difficulty of changing these students’ conceptions, teachers deliberately use certain forms of content representations as well teaching activities designed to change them. The students' conceptions generally evolve towards a more advanced level of formulation corresponding to the probabilistic model, even if several errors still remain.

Keywords

Science education, chemistry, conceptions, teaching practices, atomic models 

Full Text:

PDF

References

Astolfi, J.-P., Darot, É., Ginsburger-Vogel, Y., & Toussaint, J. (2008). Mots-clés de la didactique des sciences. De Boeck.

Brehelin, D. (1994). Images spontanées et induites par l’enseignement du concept «atome» pour les élèves de collèges. Bulletin de l’Union des Physiciens, 88(763), 19.

Cervellati, R., & Perugini, D. (1981). The understanding of the atomic orbital concept by Italian high school students. Journal of Chemical Education, 58(7), 568-569.

Cokelez, A., & Dumon, A. (2005). Atom and molecule: Upper secondary school French students’ representations in long-term memory. Chemistry Education Research and Practice, 6(1987), 119‑135.

Cros, D., Maurin, M., Amouroux, R., Chastrette, M., Leber, J., & Fayol, M. (1986). Conceptions of first‐year university students of the constituents of matter and the notions of acids and bases. European Journal of Science Education, 8(3), 331‑336.

Driver, R., & Easley, J. (1978). Pupils and Paradigms : A review of literature related to concept development in adolescent Science students. Studies in Science Education, 5(1), 61‑84.

Duit, R. (1991). Students’ conceptual frameworks: Consequences for learning science. In S. M. Glynn, R. H. Yeany & B. K. Britton (Éds.), The psychology of learning science (pp. 65‑83). Lawrence Erlbaum Associates.

Fortin, M.-F. (2010). Fondements et étapes du processus de recherche. Chenelière éducation.

Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions : Changing perspectives in Science Education. Studies in Science Education, 10(1), 61‑98.

Giordan, A. (1989). Le modèle allostérique et les théories contemporaines sur l’apprentissage. Retrieved from http://www.ldes.unige.ch/publi/rech/th_app.htm.

Giordan, A., & de Vecchi, G. (1987). Les origines du savoir. Des conceptions des apprenants aux concepts scientifiques. Delachaux et Niestlé.

Grivopoulos, K., & Ravanis, K. (2021). Les représentations sociales de l’atome chez des élèves français et grecs. Revista Electrónica de Investigación en Educación en Ciencias, 16(1), 1-11.

Kiray, S. A. (2016). The pre-service Science Teachers’ mental models for concept of atoms and learning difficulties. International Journal of Education in Mathematics, Science and Technology, 4(2), 147‑162.

Kousa, P., Kavonius, R., & Aksela, M. (2018). Low-achieving students’ attitudes towards learning chemistry and chemistry teaching methods. Chemistry Education Research and Practice, 19(2), 431‑441.

Mashhadi, A. (1995). Advanced level Physics students’ conceptions of Quantum Physics. Annual Meeting of the Singapore Educational Research Association, Singapore. Retrieved from https://files.eric.ed.gov/fulltext/ED414197.pdf.

Morge, L., & Doly, A.-M. (2013). L’enseignement de notion de modèle : Quels modèles pour faire comprendre la distinction entre modèle et réalité ? Spirale. Revue de recherches en éducation, 52(1), 149‑175.

Nguessan, S. K. (2016). Les futurs enseignants de physique-chimie et le concept d’atome. Quelques représentations, difficultés et obstacles identifiés lors de leur formation professionnelle. International Journal of Contemporary Applied

Sciences, 3(2), 241-259.

Paillé, P., & Muchielli, A. (2016). L’analyse qualitative en sciences humaines et sociales. Armand Collin.

Papageorgiou, G., Markos, A., & Zarkadis, N. (2016). Students’ representations of the atomic structure – the effect of some individual differences in particular task contexts. Chemistry Education Research and Practice, 17(1), 209‑219.

Park, E. J. (2006). Student perception and conceptual development as represented by student mental models of atomic structure. PhD Thesis, The Ohio State University, USA.

Park, E. J., Light, G., Swarat, S., & Denise, D. (2009). Understanding learning progression in student conceptualization of atomic structure by variation theory for learning. Paper presented at the Learning Progressions in Science (LeaPS) Conference, June 2009, Iowa City, IA, USA.

Petri, J., & Niedderer, H. (1998). A learning pathway in high‐school level quantum atomic physics. International Journal of Science Education, 20(9), 1075‑1088.

Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception : Toward a theory of conceptual change. Science Education, 66(2), 211‑227.

Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence : Conceptual prevalence. Neuroeducation, 2(1), 16‑43.

Reuter, Y., Cohen-Azra, C., Daunay, B., Delambre, I., & Lahanier-Reuter, D. (2013). Dictionnaire des concepts fondamentaux des didactiques. De Boeck.

Roche Allred, Z. D., & Bretz, S. L. (2019). University chemistry students’ interpretations of multiple representations of the helium atom. Chemistry Education Research and Practice, 20(2), 358‑368.

Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., Simmons, A., Williams, S. C., Giampietro, V., & Andrew, C. M. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage, 13(2), 250‑261.

Shulman, L. S. (1987). Knowledge and teaching : Foundations of the new reform. Harvard Educational Review, 57(1), 1‑22.

Sirhan, G. (2007). Learning Difficulties in Chemistry : An overview. Turkish Science Education, 4(2), 2‑20.

Stefani, C., & Tsaparlis, G. (2009). Students’ levels of explanations, models, and misconceptions in basic quantum chemistry : A phenomenographic study. Journal of Research in Science Teaching, 46(5), 520‑536.

Taber, K. S. (2001). Building the structural concepts of Chemistry : Some considerations from educational research. Chemistry Education Research and Practice, 2(2), 123-158.

Taber, K. S. (2002). Conceptualizing quanta : Illuminating the ground state of student understanding of atomic orbitals. Chemistry Education Research and Practice, 3(2), 145‑158.

Taber, K. S. (2016). Teaching and learning chemistry. In K. S. Taber & B. Akpan (Eds.), Science Education An international course companion. Sense Publishers.

Treagust, D., Chittleborough, G., & Mamiala, T. L. (2002). Students ’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357‑368.

Treagust, D., Duit, R., & Nieswandt, M. (2000). Sources of students’ difficulties in learning Chemistry. Educación Química, 11(2), 228-235.

Tsaparlis, G. (1997). Atomic orbitals, molecular orbitals and related concepts : Conceptual difficulties among chemistry students. Research in Science Education, 27(2), 271‑287.

Unlu, P. (2010). Pre-service physics teachers’ ideas on size, visibility and structure of the atom. European Journal of Physics, 31(4), 881-892.

Van der Maren, J.-M. (1996). Méthodes de recherche pour l’éducation. Presses de l’Université de Montréal et de Boeck.

Vosniadou, S., Ioannides, C., Dimitrakopoulou, A., & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11(4‑5), 381‑419.

Zarkadis, N., Papageorgiou, G., & Stamovlasis, D. (2017). Studying the consistency between and within the student mental models for atomic structure. Chemistry Education Research and Practice, 18(4), 893‑902.


DOI: https://doi.org/10.26220/rev.4320

View Counter: Abstract | 149 | times, and PDF | 80 | times



Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Pasithee | Library & Information Center | University of Patras