The views of Francis Halbwachs on the nature of explanation in Physics and how they affect research in Didactics of Science
Abstract
In this paper we argue that the epistemological views of F. Halbwachs, a close collaborator of J. Piaget, and in particular his views on the various kinds of explanation in the field of Physics are of considerable relevance to research conducted in the context of Didactics of Science. This paper describes these views and comments, in their point of view, the research related to the explanatory schemes that students use to describe and explain physical phenomena and, in particular, mechanical phenomena. Also, the implications of Halbwachs' views on the analysis and (re)design of conceptual content of Physics curricula are discussed.
Keywords
Full Text:
PDFReferences
Adúriz-Bravo, A., Aisenstein, Á., Bianchini, G., López Arriazu, F., Simón, J., & Valli, R. (2003). A theoretical conception of ‘Didactics of Science’ in continental Europe and Latin America. Paper presented at the 4th ESERA Conference. Noordwijkerhout, Netherlands.
Aduriz-Bravo, A., & Izquierdo-Aymerich, M. (2005). Utilising the ‘3P-model’ to characterise the discipline of Didactics of Science. Science & Education, 14(1), 29-41.
Anderson, B. (1986). The experiential gestalt of causation: A common core to pupils' preconceptions in science. European Journal of Science Education, 8(2), 155-171.
Astolfi, J. P., Peterfalvi, B., & Vérin, A. (1991). Compétences méthodologiques en sciences expérimentales. Paris: Institut National de Recherche Pédagogique.
Baltas, A. (1990). Once again on the meaning of physical concepts. In P. Nikolakopoulos (Ed.), Greek studies in the Philosophy and History of Science (Boston Studies in the Philosophy of Science, vol. 121, pp. 293-313). Springer.
Besson, U. (2004). Some features of causal reasoning: Common sense and physics teaching. Research in Science & Technological Education, 22(1), 113-125.
Besson, U. (2010). Calculating and understanding: Formal models and causal explanations in science, common reasoning and Physics teaching. Science & Education, 19(3), 225-257.
Bliss, J., & Ogborn, J. (1994). Force and motion for the beginning. Learning and Instruction, 4(1), 7-25.
Boilevin, J.-M., Delserieys, A., & Ravanis, K. (Eds). (2022). Precursor models for teaching and learning science during early childhood. Springer.
Clement, J. (1979). Mapping a student’s causal conceptions from a problem-solving protocol. In J. Lochhead & J. Clement (Eds), Research on teaching thinking skills (pp. 133-146). Philadelphia: The Franklin Institute Press.
Clement, J. (1982). Students’ preconceptions in introductory Mechanics. American Journal of Physics, 50(1), 66-71.
Delegkos, Ν., & Koliopoulos, D. (2020). Constructing the 'energy' concept and its social use by students of primary education in Greece. Research in Science Education, 50(2), 393-418.
DiSessa, A. A. (1980). Momentum flow as an alternative perspective in elementary mechanics. American Journal of Physics, 48(5), 365-369.
Driver, R., Guesne, E., & Tiberghien, A. (Eds) (1985). Children's ideas in science. Milton Keynes Open University Press.
Drago, A. (1994). Mach's thesis: Thermodynamics as the basic theory of Physics teaching. Science & Education, 3(2), 189-198.
Dossis, S., & Koliopoulos, D. (2005). The problem of timekeeping with the help of the simple pendulum: An empirical study of 14-15-year-old Greek school students. In M. Matthews (Ed.), 2nd International Pendulum Project (pp. 65-78). Sydney: University of New South Wales.
Dumas-Carré, A. (1987). La résolution de problème en physique, au lycée : le procédural. Apprentissage et évaluation. Thèse de Doctorat. Université Paris VII, France.
Galili, I. (2017). Scientific knowledge as a culture: A paradigm for meaningful teaching and learning of science. In M. Matthews (Ed.), History, Philosophy and Science teaching. New perspectives (pp. 203-233), Springer.
Gauld, C. (2014). Using history to teach Mechanics. In M. Matthews (Ed.), International handbook of research in History, Philosophy and Science teaching (pp. 57-96), Springer.
Grimellini-Tomasini, N., Pecori-Balandi, B., Pacca, J. L. A., & Villani, A. (1993). Understanding conservation laws in Mechanics: Students’ conceptual change in learning about collisions. Science Education, 77(2), 169-189.
Gutierrez, R., & Ogborn, J. (1992). A causal framework for analysing alternative conceptions. International Journal of Science Education, 14(2), 201-220.
Halbwachs, F. (1949). Matérialisme dialectique et sciences physico-chimiques. Paris: Éditions Sociales.
Halbwachs, F. (1960). Théorie relativiste des fluides à spin. Paris: Gauthier-Villars.
Halbwachs, F. (1971). Causalités linéaire et circulaire en physique. In M. Bunge, F. Halbwachs, T. Kuhn, J. Piaget & L. Rosenfeld (Eds), Les théories de la causalité (pp. 39-111). Paris: Presses Universitaires de France.
Halbwachs, F. (1973). L’histoire de l’explication en physique. In Piaget et al. (Eds.) L’explication dans les sciences (pp. 72-102). Paris: Flammarion.
Halbwachs, F. (1974). La pensée physique chez l'enfant et le savant. Genève: Delachaux et Niestlé.
Halbwachs, F. (1975). La physique du maitre entre la physique du physicien et la physique de l’enfant. Revue Française de Pédagogie, 33, 19-29.
Halbwachs, F. (1978). Structure de la matière enseignée et développement conceptuel. Revue Française de Pédagogie, 45, 33-36.
Halbwachs, F. (1979). Some applications of principles from developmental psychology to science education. European Journal of Science Education, 3(2), 169-171.
Halbwachs, F. (1980). Histoire de l’énergie mécanique. Cuide, 17. France: Université Paris VI.
Halbwachs, F. (1981a). Significations et raisons dans la pensée scientifique. Archives de Psychologie, 49, 199-229.
Halbwachs, F. (1981b). Histoire de la chaleur. Cuide, 18. France:Université Paris VI.
Halbwachs, F. (1983). La "doctrine" énergétiste. Cahiers de la Fondation Archives Jean Piaget, 4, 217-242.
Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065.
Hermann, F., & Bruno Schmid, G. (1984). Statics in the momentum current picture. American Journal of Physics, 52(2), 146-152.
Hestenes, D. (1992). Modelling games in the Newtonian world. American Journal of Physics, 60(8), 732-748.
Hodson, D. (1988). Toward a philosophically more valid science curriculum. Science Education, 72(1), 19-40.
Kautz, C. H., Heron, P. R. L., Loverude, M. E., & McDermott, L. C. (2005). Student understanding of the ideal gas law, Part I: A macroscopic perspective. American Journal of Physics, 73(11), 1055-1063.
Koliopoulos, D. (2006). Issues in Science Education. The formation of school knowledge. Athens: Metaixmio Publications [In Greek].
Koliopoulos, D., & Argyropoulou, M. (2011). Constructing qualitative energy concepts in a formal educational context with 6–7-year-old students. Review of Science, Mathematics, and ICT Education, 5(1), 63-80.
Koliopoulos, D., & Constantinou, C. (2005). The pendulum as presented in school science textbooks of Greece and Cyprus. Science & Education, 14(1), 59-73.
Koliopoulos, D., & Meli, K. (2022). L’enseignement de l’énergie. Dimensions épistémologiques et didactiques. Thessaloniki: University Studio Press [in Greek].
Koliopoulos, D., & Ravanis, K. (2000a). Élaboration et évaluation du contenu conceptuel d'un programme constructiviste concernant l'approche énergétique des phénomènes mécaniques. Didaskalia, 16, 33-56.
Koliopoulos, D., & Ravanis, K. (2000b). Réflexions méthodologiques sur la formation d’une culture concernant le concept d’énergie à travers l’éducation formelle. Revue de Recherches en Éducation : Spirale, 26, 73-86.
Koliopoulos, D., & Ravanis, K. (2001). Didactic implications resulting from students’ ideas about energy: an approach to mechanical, thermal, and electrical phenomena. Themes in Education, 2(2-3), 161-173.
Koliopoulos, D., Christidou, V., Symidala, I., & Koutsoumba, M. (2009). Pre-energy reasoning in pre-school children. Review of Science, Mathematics, and ICT Education, 3(1), 123-140.
Koliopoulos, D., Meli, K., Arapaki, X., Sissamperi, N., Georgopoulou, P., & Pappa, E. (2022). Special topics in Science Education and Museology of Natural Sciences. Kallipos, Open Academic Editions.
Koponen, I. T., & Mäntylä, T. (2008). Generative role of experiments in Physics and in teaching Physics: A suggestion for epistemological reconstruction. Science & Education, 15(1), 31–54.
Küçüközer, A. (2006). Evolution of the students' conceptual understanding in the case of a teaching sequence in mechanics: Concept of interaction. Eurasia Journal of Mathematics, Science and Technology Education, 2(1), 30-40.
Leinonen, R., Asikainen, M. A., & Hirvonen, P. E. (2012). University students explaining adiabatic compression of an ideal gas-A new phenomenon in introductory thermal Physics. Research in Science Education, 42(6), 1165-1182.
Lemeignan, G., & Weil-Barais, A. (1994). A developmental approach to cognitive change in mechanics. International Journal of Science Education, 16(1), 99-120.
Mach, E. (1919). The science of Mechanics. A critical and historical account of its development. Chicago: The Open Court.
Matthews, M. (1990). Ernst Mach and contemporary science education reforms. International Journal of Science Education, 12(3), 317-325.
McCloskey, M., & Kargon, R. (1988). The meaning and use of historical models in the study of intuitive physics. In S. Strauss (Ed.), Ontogeny, phylogeny and historical development (pp. 49-67). New York: Ablex Publishing Corp.
McDermott, L. C. (1984). Research in conceptual understanding in Mechanics. Physics Today, 37, 24-32.
Meli, K., & Koliopoulos, D. (2019). Teaching and learning of the first thermodynamics law: The sufficiency of the macroscopic framework from an epistemological and didactical perspective. In F. Seroglou & V. Koulountzos (Eds), Proceedings of15th International History, Philosophy and Science Teaching Conference (pp. 140-147), Thessaloniki: Grafima Publications.
Meli, K., Koliopoulos, D., & Lavidas, K. (2021). A model-based constructivist approach for bridging qualitative and quantitative aspects in teaching and learning the first law of thermodynamics. Science & Education, 31(2), 451-485.
Meli, K., Koliopoulos, D., Lavidas, K., & Papalexiou, G. (2016). Upper secondary school students’ understanding of adiabatic compression. Review of Science, Mathematics, and ICT Education, 10(2), 131-147.
Minstrell, J. (1982). Explaining the ‘at rest’ condition of an object. The Physics Teacher, 20, 10-14.
Nersessian, N. (2008). Creating scientific concepts. The MIT Press.
Paraskevopoulou, E., & Koliopoulos, D. (2011). Teaching the Nature of Science through the Millikan-Ehrenhaft dispute. Science & Education, 20(10), 943-960.
Piaget, J., & Garcia, R. (1971). Les explications causales. Paris: Presses Universitaires de France.
PROPHY (1990). Le diagramme objets-interactions. Bulletin de l’Union des Physiciens, 722, 353-373.
Ravanis, K., Koliopoulos, D., & Hadjigeorgiou, Y. (2004). What factors does friction depend on? A socio-cognitive teaching intervention with young children. International Journal of Science Education, 26(8), 997-1007.
Ravanis, K., Koliopoulos, D., & Boilevin, J.M. (2007), Construction of a precursor model for the concept of rolling friction in the thought of preschool age children: A socio-cognitive teaching intervention. Research in Science Education, 38(4), 421-434.
Rosier, S., & Viennot, L. (1991). Students' reasoning in thermodynamics. International Journal of Science Education, 13(20), 159-170.
Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424-446.
Sissamperi, N., & Koliopoulos, D. (2021). How students of primary school understand large scale energy systems: the case of thermal power plant. Journal of Technology and Science Education, 11(1), 129-145.
Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design‐based research: Case of a teaching sequence on Mechanics. International Journal of Science Education, 31(17), 2275-2314.
Tiberghien, A. (2004). Causalité dans l'apprentissage des sciences. Intellectica, 38, 69-102.
Vergnaud, G., Halbwachs, F., & Rouchier, A. (1978). Structure de la matière enseignée, histoire des sciences et développement conceptuel chez les élèves. Revue Française de Pédagogie, 45, 6-15.
Viennot, L. (1979). Le raisonnement spontané en dynamique élémentaire. Paris: Hermann.
Viennot, L. (1993). Temps et causalité dans les raisonnements des étudiants en physique. Didaskalia, 1, 13-27.
Viennot, L. (2001). Reasoning in Physics. The part of common sense. Kluwer Academic Publishers.
DOI: https://doi.org/10.26220/rev.5247
View Counter: Abstract | 65 | times, and PDF | 33 | times

This work is licensed under a Creative Commons Attribution 4.0 International License.
Re S M ICT E | ISSN: 1792-3999 (electronic), 1791-261X (print) | Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.
Pasithee | Library & Information Center | University of Patras